在Heisenberg范畴中嵌入Deligne的范畴$\ mathm {\Underline{Re}p}(S_t)$

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2019-05-14 DOI:10.4171/QT/147
Samuel Nyobe Likeng, Alistair Savage
{"title":"在Heisenberg范畴中嵌入Deligne的范畴$\\ mathm {\\Underline{Re}p}(S_t)$","authors":"Samuel Nyobe Likeng, Alistair Savage","doi":"10.4171/QT/147","DOIUrl":null,"url":null,"abstract":"We define a faithful linear monoidal functor from the partition category, and hence from Deligne’s category Rep(St), to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"109 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding Deligne's category $\\\\mathrm{\\\\Underline{Re}p}(S_t)$ in the Heisenberg category\",\"authors\":\"Samuel Nyobe Likeng, Alistair Savage\",\"doi\":\"10.4171/QT/147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a faithful linear monoidal functor from the partition category, and hence from Deligne’s category Rep(St), to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/147\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/147","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了一个忠实的线性一元函子,从划分范畴,从而从Deligne的范畴Rep(St),到海森堡范畴的加性Karoubi包络。我们证明了Grothendieck环上的诱导映射是内射的,并且对应于对称函数上的Kronecker副积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding Deligne's category $\mathrm{\Underline{Re}p}(S_t)$ in the Heisenberg category
We define a faithful linear monoidal functor from the partition category, and hence from Deligne’s category Rep(St), to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信