{"title":"使用机器学习来支持法律预测的好处和危险","authors":"John Zeleznikow","doi":"10.1002/widm.1505","DOIUrl":null,"url":null,"abstract":"Rule‐based systems have been used in the legal domain since the 1970s. Save for rare exceptions, machine learning has only recently been used. But why this delay? We investigate the appropriate use of machine learning to support and make legal predictions. To do so, we need to examine the appropriate use of data in global legal domains—including in common law, civil law, and hybrid jurisdictions. The use of various forms of Artificial Intelligence, including rule‐based reasoning, case‐based reasoning and machine learning in law requires an understanding of jurisprudential theories. We will see that the use of machine learning is particularly appropriate for non‐professionals: in particular self‐represented litigants or those relying upon legal aid services. The primary use of machine learning to support decision‐making in legal domains has been in criminal detection, financial domains, and sentencing. The use in these areas has led to concerns that the inappropriate use of Artificial Intelligence leads to biased decision making. This requires us to examine concerns about governance and ethics. Ethical concerns can be minimized by providing enhanced explanation, choosing appropriate data to be used, appropriately cleaning that data, and having human reviews of any decisions.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"5 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The benefits and dangers of using machine learning to support making legal predictions\",\"authors\":\"John Zeleznikow\",\"doi\":\"10.1002/widm.1505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rule‐based systems have been used in the legal domain since the 1970s. Save for rare exceptions, machine learning has only recently been used. But why this delay? We investigate the appropriate use of machine learning to support and make legal predictions. To do so, we need to examine the appropriate use of data in global legal domains—including in common law, civil law, and hybrid jurisdictions. The use of various forms of Artificial Intelligence, including rule‐based reasoning, case‐based reasoning and machine learning in law requires an understanding of jurisprudential theories. We will see that the use of machine learning is particularly appropriate for non‐professionals: in particular self‐represented litigants or those relying upon legal aid services. The primary use of machine learning to support decision‐making in legal domains has been in criminal detection, financial domains, and sentencing. The use in these areas has led to concerns that the inappropriate use of Artificial Intelligence leads to biased decision making. This requires us to examine concerns about governance and ethics. Ethical concerns can be minimized by providing enhanced explanation, choosing appropriate data to be used, appropriately cleaning that data, and having human reviews of any decisions.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1505\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1505","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The benefits and dangers of using machine learning to support making legal predictions
Rule‐based systems have been used in the legal domain since the 1970s. Save for rare exceptions, machine learning has only recently been used. But why this delay? We investigate the appropriate use of machine learning to support and make legal predictions. To do so, we need to examine the appropriate use of data in global legal domains—including in common law, civil law, and hybrid jurisdictions. The use of various forms of Artificial Intelligence, including rule‐based reasoning, case‐based reasoning and machine learning in law requires an understanding of jurisprudential theories. We will see that the use of machine learning is particularly appropriate for non‐professionals: in particular self‐represented litigants or those relying upon legal aid services. The primary use of machine learning to support decision‐making in legal domains has been in criminal detection, financial domains, and sentencing. The use in these areas has led to concerns that the inappropriate use of Artificial Intelligence leads to biased decision making. This requires us to examine concerns about governance and ethics. Ethical concerns can be minimized by providing enhanced explanation, choosing appropriate data to be used, appropriately cleaning that data, and having human reviews of any decisions.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.