群的局部不变序的个数

Pub Date : 2022-04-02 DOI:10.1515/jgth-2022-0126
I. Ba, A. Clay, I. Thompson
{"title":"群的局部不变序的个数","authors":"I. Ba, A. Clay, I. Thompson","doi":"10.1515/jgth-2022-0126","DOIUrl":null,"url":null,"abstract":"Abstract We show that if a nontrivial group admits a locally invariant ordering, then it admits uncountably many locally invariant orderings. For the case of a left-orderable group, we provide an explicit construction of uncountable families of locally invariant orderings; for a general group, we provide an existence theorem that applies compactness to yield uncountably many locally invariant orderings. Along the way, we define and investigate the space of locally invariant orderings of a group, the natural group actions on this space, and their relationship to the space of left-orderings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of locally invariant orderings of a group\",\"authors\":\"I. Ba, A. Clay, I. Thompson\",\"doi\":\"10.1515/jgth-2022-0126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that if a nontrivial group admits a locally invariant ordering, then it admits uncountably many locally invariant orderings. For the case of a left-orderable group, we provide an explicit construction of uncountable families of locally invariant orderings; for a general group, we provide an existence theorem that applies compactness to yield uncountably many locally invariant orderings. Along the way, we define and investigate the space of locally invariant orderings of a group, the natural group actions on this space, and their relationship to the space of left-orderings.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要证明了如果一个非平凡群允许一个局部不变序,则它允许不可数多个局部不变序。对于左序群,我们给出了局部不变序不可数族的一个显式构造;对于一般群,我们给出了一个利用紧性产生不可数多个局部不变序的存在性定理。在此过程中,我们定义并研究了群的局部不变序空间,群在这个空间上的自然作用,以及它们与左序空间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The number of locally invariant orderings of a group
Abstract We show that if a nontrivial group admits a locally invariant ordering, then it admits uncountably many locally invariant orderings. For the case of a left-orderable group, we provide an explicit construction of uncountable families of locally invariant orderings; for a general group, we provide an existence theorem that applies compactness to yield uncountably many locally invariant orderings. Along the way, we define and investigate the space of locally invariant orderings of a group, the natural group actions on this space, and their relationship to the space of left-orderings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信