超薄BGA封装的板级焊点组装和可靠性

M. Hossain, S. Aravamudhan, M. Nowakowski, Xiaoqing Ma, S. Walwadkar, V. Kulkarni, S. Muthukumar
{"title":"超薄BGA封装的板级焊点组装和可靠性","authors":"M. Hossain, S. Aravamudhan, M. Nowakowski, Xiaoqing Ma, S. Walwadkar, V. Kulkarni, S. Muthukumar","doi":"10.1109/ECTC.2012.6248804","DOIUrl":null,"url":null,"abstract":"Miniaturization of electronic components driven by “thin and light” products in portable and consumer electronics has lead to thinner and smaller Ball Grid Array (BGA) packages. Surface Mount (SMT) processes for these smaller and thinner packages present significant challenges, and the reduced Z-height requirements were met with improved process solutions. This study is focused on two technology options: (a) Solder Grid Array (SGA) and (b) Coreless packaging. Dynamic warpage and thermo mechanical analysis have significant impact on board level reliability from these technology options. Board level reliability tests indicates the SGA cored packages show lower temperature cycle performance compared to BGA cored packages due to the reduced solder joint height under fatigue loading. Shock tests are comparable for both BGA and SGA cored packages. Coreless BGA packages show significantly better reliability performance compared to the equivalent conventional cored BGA packages.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Board level solder joint assembly and reliability for ultra thin BGA packages\",\"authors\":\"M. Hossain, S. Aravamudhan, M. Nowakowski, Xiaoqing Ma, S. Walwadkar, V. Kulkarni, S. Muthukumar\",\"doi\":\"10.1109/ECTC.2012.6248804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniaturization of electronic components driven by “thin and light” products in portable and consumer electronics has lead to thinner and smaller Ball Grid Array (BGA) packages. Surface Mount (SMT) processes for these smaller and thinner packages present significant challenges, and the reduced Z-height requirements were met with improved process solutions. This study is focused on two technology options: (a) Solder Grid Array (SGA) and (b) Coreless packaging. Dynamic warpage and thermo mechanical analysis have significant impact on board level reliability from these technology options. Board level reliability tests indicates the SGA cored packages show lower temperature cycle performance compared to BGA cored packages due to the reduced solder joint height under fatigue loading. Shock tests are comparable for both BGA and SGA cored packages. Coreless BGA packages show significantly better reliability performance compared to the equivalent conventional cored BGA packages.\",\"PeriodicalId\":6384,\"journal\":{\"name\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2012.6248804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6248804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在便携式和消费电子产品中,由“轻薄”产品驱动的电子元件小型化导致了更薄更小的球栅阵列(BGA)封装。对于这些更小、更薄的封装,表面贴装(SMT)工艺提出了重大挑战,改进的工艺解决方案可以满足降低z高度的要求。本研究的重点是两种技术选择:(a)焊料网格阵列(SGA)和(b)无芯封装。动态翘曲和热力学分析对这些技术选择的板级可靠性有重大影响。板级可靠性测试表明,由于在疲劳载荷下焊点高度降低,SGA芯封装比BGA芯封装表现出更低的温度循环性能。冲击测试对BGA和SGA芯封装都具有可比性。无芯BGA封装与同等的传统有芯BGA封装相比,具有更好的可靠性性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Board level solder joint assembly and reliability for ultra thin BGA packages
Miniaturization of electronic components driven by “thin and light” products in portable and consumer electronics has lead to thinner and smaller Ball Grid Array (BGA) packages. Surface Mount (SMT) processes for these smaller and thinner packages present significant challenges, and the reduced Z-height requirements were met with improved process solutions. This study is focused on two technology options: (a) Solder Grid Array (SGA) and (b) Coreless packaging. Dynamic warpage and thermo mechanical analysis have significant impact on board level reliability from these technology options. Board level reliability tests indicates the SGA cored packages show lower temperature cycle performance compared to BGA cored packages due to the reduced solder joint height under fatigue loading. Shock tests are comparable for both BGA and SGA cored packages. Coreless BGA packages show significantly better reliability performance compared to the equivalent conventional cored BGA packages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信