丁香酚对卵巢扭转雌性大鼠卵泡发育过程中FSHR、LHCGR和ER表达的调节作用

IF 0.8 Q4 REPRODUCTIVE BIOLOGY
Ramesh Baradaran Bagheri, Seyedeh Sara Salami, Linda Mohammadzadeh Boukani, A. Khaki
{"title":"丁香酚对卵巢扭转雌性大鼠卵泡发育过程中FSHR、LHCGR和ER表达的调节作用","authors":"Ramesh Baradaran Bagheri, Seyedeh Sara Salami, Linda Mohammadzadeh Boukani, A. Khaki","doi":"10.15296/ijwhr.2023.24","DOIUrl":null,"url":null,"abstract":"Objectives: This study aimed to investigate the role of Eugenol in regulating the expression of FSH receptor (FSHR), human luteinizing hormone choriogonadotropin receptor (LHCGR), and estrogen receptor (ER) during follicular development in female rat ovarian torsion. Materials and Methods: In this experimental study, 48 female rats were randomly assigned to 4 groups, including G1 (i.e., sham), G2 (i.e., ovarian torsion/detorsion group), G3 (i.e., ovarian torsion/detorsion group treated with 30 mg/kg of eugenol), G4 (i.e., healthy group treated with 30 mg/kg of eugenol). After covering a treatment period of ten days, the ovarian tissue was collected for the histological analysis, the measurement of ER, FSHR, and LHCGR expression, as well as the assessment of testosterone, LH, FSH, and estrogen levels in blood serum. Results: Histological evaluation revealed the damage to ovarian tissue, the reduced oocyte, and the granulosa cell diameter in the torsion/detorsion group. However, the treatment with eugenol mitigated this damage. Eugenol administration increased the levels of estrogen, LH, and FSH, but it decreased the testosterone levels in the treated group. Moreover, the expression of ER, FSHR, and LHCGR was upregulated in the treated groups. Administration of eugenol was associated with an enhanced fertility. Conclusions: It was concluded that eugenol administration may have been effective in protecting the ovarian tissue from the damage caused by torsion/detorsion. Furthermore, eugenol was found to have the potential to modulate hormonal profiles and regulate the expression of ER, FSHR, and LHCGR, thereby contributing to an increased fertility.","PeriodicalId":14346,"journal":{"name":"International Journal of Women's Health and Reproduction Sciences","volume":"59 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Regulatory Effect of Eugenol on FSHR, LHCGR, and ER Expression during Follicular Development in Female Rats With Ovarian Torsion\",\"authors\":\"Ramesh Baradaran Bagheri, Seyedeh Sara Salami, Linda Mohammadzadeh Boukani, A. Khaki\",\"doi\":\"10.15296/ijwhr.2023.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: This study aimed to investigate the role of Eugenol in regulating the expression of FSH receptor (FSHR), human luteinizing hormone choriogonadotropin receptor (LHCGR), and estrogen receptor (ER) during follicular development in female rat ovarian torsion. Materials and Methods: In this experimental study, 48 female rats were randomly assigned to 4 groups, including G1 (i.e., sham), G2 (i.e., ovarian torsion/detorsion group), G3 (i.e., ovarian torsion/detorsion group treated with 30 mg/kg of eugenol), G4 (i.e., healthy group treated with 30 mg/kg of eugenol). After covering a treatment period of ten days, the ovarian tissue was collected for the histological analysis, the measurement of ER, FSHR, and LHCGR expression, as well as the assessment of testosterone, LH, FSH, and estrogen levels in blood serum. Results: Histological evaluation revealed the damage to ovarian tissue, the reduced oocyte, and the granulosa cell diameter in the torsion/detorsion group. However, the treatment with eugenol mitigated this damage. Eugenol administration increased the levels of estrogen, LH, and FSH, but it decreased the testosterone levels in the treated group. Moreover, the expression of ER, FSHR, and LHCGR was upregulated in the treated groups. Administration of eugenol was associated with an enhanced fertility. Conclusions: It was concluded that eugenol administration may have been effective in protecting the ovarian tissue from the damage caused by torsion/detorsion. Furthermore, eugenol was found to have the potential to modulate hormonal profiles and regulate the expression of ER, FSHR, and LHCGR, thereby contributing to an increased fertility.\",\"PeriodicalId\":14346,\"journal\":{\"name\":\"International Journal of Women's Health and Reproduction Sciences\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Women's Health and Reproduction Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15296/ijwhr.2023.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Women's Health and Reproduction Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15296/ijwhr.2023.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:探讨丁香酚在雌性卵巢扭转大鼠卵泡发育过程中对促卵泡刺激素受体(FSHR)、促黄体生成素受体(LHCGR)和雌激素受体(ER)表达的调节作用。材料与方法:将48只雌性大鼠随机分为4组,G1组(假手术组)、G2组(卵巢扭转/扭转组)、G3组(卵巢扭转/扭转组)和G4组(健康组),分别给予丁香酚30 mg/kg剂量。治疗10天后,收集卵巢组织进行组织学分析,测量ER、FSHR和LHCGR表达,评估血清中睾酮、LH、FSH和雌激素水平。结果:组织学检查显示扭转/扭转组卵巢组织损伤,卵母细胞减少,颗粒细胞直径减小。然而,丁香酚的处理减轻了这种损害。丁香酚增加了雌性激素、黄体生成素和卵泡刺激素的水平,但降低了治疗组的睾丸激素水平。治疗组ER、FSHR、LHCGR表达上调。丁香酚的施用与生育能力的增强有关。结论:丁香酚可有效保护卵巢组织免受扭转/扭曲造成的损伤。此外,丁香酚被发现具有调节激素谱和调节ER、FSHR和LHCGR表达的潜力,从而有助于提高生育能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Regulatory Effect of Eugenol on FSHR, LHCGR, and ER Expression during Follicular Development in Female Rats With Ovarian Torsion
Objectives: This study aimed to investigate the role of Eugenol in regulating the expression of FSH receptor (FSHR), human luteinizing hormone choriogonadotropin receptor (LHCGR), and estrogen receptor (ER) during follicular development in female rat ovarian torsion. Materials and Methods: In this experimental study, 48 female rats were randomly assigned to 4 groups, including G1 (i.e., sham), G2 (i.e., ovarian torsion/detorsion group), G3 (i.e., ovarian torsion/detorsion group treated with 30 mg/kg of eugenol), G4 (i.e., healthy group treated with 30 mg/kg of eugenol). After covering a treatment period of ten days, the ovarian tissue was collected for the histological analysis, the measurement of ER, FSHR, and LHCGR expression, as well as the assessment of testosterone, LH, FSH, and estrogen levels in blood serum. Results: Histological evaluation revealed the damage to ovarian tissue, the reduced oocyte, and the granulosa cell diameter in the torsion/detorsion group. However, the treatment with eugenol mitigated this damage. Eugenol administration increased the levels of estrogen, LH, and FSH, but it decreased the testosterone levels in the treated group. Moreover, the expression of ER, FSHR, and LHCGR was upregulated in the treated groups. Administration of eugenol was associated with an enhanced fertility. Conclusions: It was concluded that eugenol administration may have been effective in protecting the ovarian tissue from the damage caused by torsion/detorsion. Furthermore, eugenol was found to have the potential to modulate hormonal profiles and regulate the expression of ER, FSHR, and LHCGR, thereby contributing to an increased fertility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
8
期刊介绍: All kind of knowledge contributing to the development of science by its content, value, level and originality will be covered by IJWHR. Problems of public health and their solutions are at the head of the windows opening us to the world. The "International Journal of Women''s Health and Reproduction Sciences” is a modern forum for scientific communication, covering all aspects women health and reproduction sciences, in basic and clinical sciences, mainly including: -Medical Education in Women Health and Reproduction Sciences -Cardiology in Women Health-Related Reproductive Problems -Sports Medicine in Women Health and Reproduction Sciences -Psychiatry in Women Health-Related Reproductive Problems -Antioxidant Therapy in Reproduction Medicine Sciences -Nutrition in Women Health and Reproduction Sciences -Defense Androgen and Estrogen -Fertility and Infertility -Urogynecology -Endometriosis -Endocrinology -Breast Cancer -Menopause -Puberty -Eroticism -Pregnancy -Preterm Birth -Vaginal Diseases -Sex-Based Biology -Surgical Procedures -Nursing in Pregnancy -Obstetrics/Gynecology -Polycystic Ovary Syndrome -Hyperandrogenism in Females -Menstrual Syndrome and Complications -Oncology of Female Reproductive Organs -Traditional Medicine in Women Reproductive Health -Ultrasound in Women Health Reproduction sciences -Stem Cell Research In Women Reproduction Sciences -Complementary Medicine in Women Reproductive Health -Female Sexual Dysfunction: Pathophysiology & Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信