Reşat Apak , Erol Erçağ , Mustafa Özyürek , Kubilay Güçlü , Ayşem Üzer , Saliha Esin Çelik , Burcu Bekdeşer , Ziya Can , Şener Sağlam
{"title":"用于测定酚类抗氧化剂、生物硫醇、亚硝酸盐和过氧化氢的新型纳米粒子比色探针和传感器","authors":"Reşat Apak , Erol Erçağ , Mustafa Özyürek , Kubilay Güçlü , Ayşem Üzer , Saliha Esin Çelik , Burcu Bekdeşer , Ziya Can , Şener Sağlam","doi":"10.1016/j.protcy.2017.04.040","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the principles and milestones of nanoparticle (NP)-based colorimetric sensors and probes developed by our research group. A novel method for antioxidant capacity estimation was developed on the polyphenol-mediated growth of Ag-NPs and optical monitoring of the corresponding plasmon absorption bands. A new optical sensor using Ellman's reagent-adsorbed gold nanoparticles in colloidal solution was devised to selectively determine biothiols. Nitrite was determined by means of 4-aminothiophenol-modified Au-NPs and naphthylethylene diamine as coupling agent. Hydrogen peroxide was detected with the use of Fe<sub>3</sub>O<sub>4</sub> magnetite NPs as peroxidase-like catalyst using a <em>N</em>,<em>N</em>-dimethyl-<em>p</em>-phenylenediamine (DMPD) probe.</p></div>","PeriodicalId":101042,"journal":{"name":"Procedia Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.040","citationCount":"0","resultStr":"{\"title\":\"Novel Nanoparticle-based Colorimetric Probes and Sensors for Determining Phenolic Antioxidants, Biothiols, Nitrite and Hydrogen Peroxide\",\"authors\":\"Reşat Apak , Erol Erçağ , Mustafa Özyürek , Kubilay Güçlü , Ayşem Üzer , Saliha Esin Çelik , Burcu Bekdeşer , Ziya Can , Şener Sağlam\",\"doi\":\"10.1016/j.protcy.2017.04.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examines the principles and milestones of nanoparticle (NP)-based colorimetric sensors and probes developed by our research group. A novel method for antioxidant capacity estimation was developed on the polyphenol-mediated growth of Ag-NPs and optical monitoring of the corresponding plasmon absorption bands. A new optical sensor using Ellman's reagent-adsorbed gold nanoparticles in colloidal solution was devised to selectively determine biothiols. Nitrite was determined by means of 4-aminothiophenol-modified Au-NPs and naphthylethylene diamine as coupling agent. Hydrogen peroxide was detected with the use of Fe<sub>3</sub>O<sub>4</sub> magnetite NPs as peroxidase-like catalyst using a <em>N</em>,<em>N</em>-dimethyl-<em>p</em>-phenylenediamine (DMPD) probe.</p></div>\",\"PeriodicalId\":101042,\"journal\":{\"name\":\"Procedia Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.protcy.2017.04.040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212017317300415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212017317300415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Nanoparticle-based Colorimetric Probes and Sensors for Determining Phenolic Antioxidants, Biothiols, Nitrite and Hydrogen Peroxide
This study examines the principles and milestones of nanoparticle (NP)-based colorimetric sensors and probes developed by our research group. A novel method for antioxidant capacity estimation was developed on the polyphenol-mediated growth of Ag-NPs and optical monitoring of the corresponding plasmon absorption bands. A new optical sensor using Ellman's reagent-adsorbed gold nanoparticles in colloidal solution was devised to selectively determine biothiols. Nitrite was determined by means of 4-aminothiophenol-modified Au-NPs and naphthylethylene diamine as coupling agent. Hydrogen peroxide was detected with the use of Fe3O4 magnetite NPs as peroxidase-like catalyst using a N,N-dimethyl-p-phenylenediamine (DMPD) probe.