车-座-人综合平顺性评价模型的比较研究

D. Koulocheris, C. Vossou
{"title":"车-座-人综合平顺性评价模型的比较研究","authors":"D. Koulocheris, C. Vossou","doi":"10.3390/vehicles5010010","DOIUrl":null,"url":null,"abstract":"In the literature the value of the driver’s head acceleration has been widely used as an objective function for the modification of the suspension and/or the seat characteristics in order to optimize the ride comfort of a vehicle. For these optimization procedures various lumped parameter Vehicle–Seat–Human models are proposed. In the present paper a Quarter Car model is integrated with three Seat–Human models with different levels of detail. The level of detail corresponds to the number of degrees of freedom used to describe the Seat–Human system. Firstly, the performance of the Quarter Car model, used as a basis, is analyzed in six excitations with different characteristics. Then, the performance of the three lumped parameter Vehicle–Seat–Human models are monitored in the same excitations. The results indicated that in the case of single disturbance excitations the Quarter Car model provided 50–75% higher values of acceleration compared with the eight degrees of freedom model. As far as the periodic excitation is concerned, the Vehicle–Seat–Human models provided values of acceleration up to eight times those of the Quarter Car model. On the other hand, in stochastic excitations the Vehicle–Seat–Human model with three degrees of freedom produced the closest results to the Quarter Car model followed by the eight degrees of freedom model. Finally, with respect to the computational efficiency it was found that an increase in the degrees of freedom of the Vehicle–Seat–Human model by one caused an increase in the CPU time from 2.1 to 2.6%, while increasing the number of the degrees of freedom by five increased the CPU time from 7.4 to 11.5% depending on the excitation.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparative Study of Integrated Vehicle–Seat–Human Models for the Evaluation of Ride Comfort\",\"authors\":\"D. Koulocheris, C. Vossou\",\"doi\":\"10.3390/vehicles5010010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the literature the value of the driver’s head acceleration has been widely used as an objective function for the modification of the suspension and/or the seat characteristics in order to optimize the ride comfort of a vehicle. For these optimization procedures various lumped parameter Vehicle–Seat–Human models are proposed. In the present paper a Quarter Car model is integrated with three Seat–Human models with different levels of detail. The level of detail corresponds to the number of degrees of freedom used to describe the Seat–Human system. Firstly, the performance of the Quarter Car model, used as a basis, is analyzed in six excitations with different characteristics. Then, the performance of the three lumped parameter Vehicle–Seat–Human models are monitored in the same excitations. The results indicated that in the case of single disturbance excitations the Quarter Car model provided 50–75% higher values of acceleration compared with the eight degrees of freedom model. As far as the periodic excitation is concerned, the Vehicle–Seat–Human models provided values of acceleration up to eight times those of the Quarter Car model. On the other hand, in stochastic excitations the Vehicle–Seat–Human model with three degrees of freedom produced the closest results to the Quarter Car model followed by the eight degrees of freedom model. Finally, with respect to the computational efficiency it was found that an increase in the degrees of freedom of the Vehicle–Seat–Human model by one caused an increase in the CPU time from 2.1 to 2.6%, while increasing the number of the degrees of freedom by five increased the CPU time from 7.4 to 11.5% depending on the excitation.\",\"PeriodicalId\":73282,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles5010010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles5010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在文献中,驾驶员头部加速度的值已被广泛用作修改悬架和/或座椅特性的目标函数,以优化车辆的乘坐舒适性。针对这些优化过程,提出了各种集总参数车-座-人模型。本文将四分之一汽车模型与三个不同细节层次的人体模型相结合。详细程度对应于用于描述Seat-Human系统的自由度的数量。首先,以四分之一汽车模型为基础,分析了该模型在六种不同特征激励下的性能。然后,对三种集总参数车-座-人模型在相同激励下的性能进行了监测。结果表明,在单扰动激励下,四分之一车模型提供的加速度值比八自由度模型高50-75%。就周期激励而言,车-座-人模型提供的加速度值是四分之一车模型的8倍。另一方面,在随机激励下,具有三个自由度的车辆-座位-人模型产生的结果最接近四分之一汽车模型,其次是八个自由度模型。最后,在计算效率方面,发现根据激励的不同,车辆-座位-人模型的自由度每增加1个,CPU时间从2.1增加到2.6%,而自由度增加5个,CPU时间从7.4增加到11.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Integrated Vehicle–Seat–Human Models for the Evaluation of Ride Comfort
In the literature the value of the driver’s head acceleration has been widely used as an objective function for the modification of the suspension and/or the seat characteristics in order to optimize the ride comfort of a vehicle. For these optimization procedures various lumped parameter Vehicle–Seat–Human models are proposed. In the present paper a Quarter Car model is integrated with three Seat–Human models with different levels of detail. The level of detail corresponds to the number of degrees of freedom used to describe the Seat–Human system. Firstly, the performance of the Quarter Car model, used as a basis, is analyzed in six excitations with different characteristics. Then, the performance of the three lumped parameter Vehicle–Seat–Human models are monitored in the same excitations. The results indicated that in the case of single disturbance excitations the Quarter Car model provided 50–75% higher values of acceleration compared with the eight degrees of freedom model. As far as the periodic excitation is concerned, the Vehicle–Seat–Human models provided values of acceleration up to eight times those of the Quarter Car model. On the other hand, in stochastic excitations the Vehicle–Seat–Human model with three degrees of freedom produced the closest results to the Quarter Car model followed by the eight degrees of freedom model. Finally, with respect to the computational efficiency it was found that an increase in the degrees of freedom of the Vehicle–Seat–Human model by one caused an increase in the CPU time from 2.1 to 2.6%, while increasing the number of the degrees of freedom by five increased the CPU time from 7.4 to 11.5% depending on the excitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信