Honglei Xue, Wanshuo Gao, Jianwei Gao, G. Schneider, Chen Wang, Wangyang Fu
{"title":"基于新兴二维材料和器件的射频传感系统","authors":"Honglei Xue, Wanshuo Gao, Jianwei Gao, G. Schneider, Chen Wang, Wangyang Fu","doi":"10.1088/2631-7990/acd88d","DOIUrl":null,"url":null,"abstract":"As one of the most promising platforms for wireless communication, radiofrequency (RF) electronics have been widely advocated for the development of sensing systems. In particular, monolayer and few-layer two-dimensional (2D) materials exhibiting extraordinary electrical properties not only can be integrated to improve the performance of RF circuits, but also to display exceptional sensing capabilities. This review provides an in-depth perspective of current trends and challenges in the application of 2D materials for RF biochemical sensing, including: (i) theoretical bases to achieve different sensing schemes; (ii) unique properties of 2D materials for reasoning their applications in RF sensing; (iii) developments in 2D RF sensors to facilitate the practice of biochemical sensors with ever-demanding sensitivities, as well as their potential uses in meeting the requirements and challenges of biochemical sensors in the Internet-of-Things era.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"110 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiofrequency sensing systems based on emerging two-dimensional materials and devices\",\"authors\":\"Honglei Xue, Wanshuo Gao, Jianwei Gao, G. Schneider, Chen Wang, Wangyang Fu\",\"doi\":\"10.1088/2631-7990/acd88d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most promising platforms for wireless communication, radiofrequency (RF) electronics have been widely advocated for the development of sensing systems. In particular, monolayer and few-layer two-dimensional (2D) materials exhibiting extraordinary electrical properties not only can be integrated to improve the performance of RF circuits, but also to display exceptional sensing capabilities. This review provides an in-depth perspective of current trends and challenges in the application of 2D materials for RF biochemical sensing, including: (i) theoretical bases to achieve different sensing schemes; (ii) unique properties of 2D materials for reasoning their applications in RF sensing; (iii) developments in 2D RF sensors to facilitate the practice of biochemical sensors with ever-demanding sensitivities, as well as their potential uses in meeting the requirements and challenges of biochemical sensors in the Internet-of-Things era.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/acd88d\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acd88d","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Radiofrequency sensing systems based on emerging two-dimensional materials and devices
As one of the most promising platforms for wireless communication, radiofrequency (RF) electronics have been widely advocated for the development of sensing systems. In particular, monolayer and few-layer two-dimensional (2D) materials exhibiting extraordinary electrical properties not only can be integrated to improve the performance of RF circuits, but also to display exceptional sensing capabilities. This review provides an in-depth perspective of current trends and challenges in the application of 2D materials for RF biochemical sensing, including: (i) theoretical bases to achieve different sensing schemes; (ii) unique properties of 2D materials for reasoning their applications in RF sensing; (iii) developments in 2D RF sensors to facilitate the practice of biochemical sensors with ever-demanding sensitivities, as well as their potential uses in meeting the requirements and challenges of biochemical sensors in the Internet-of-Things era.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.