{"title":"在一棵大的凯莱树上燃烧和防火部件的大小","authors":"Cyril Marzouk","doi":"10.1214/14-AIHP640","DOIUrl":null,"url":null,"abstract":"We continue the study initiated by Jean Bertoin in 2012 of a random dynamics on the edges of a uniform Cayley tree with $n$ vertices in which, successively, each edge is either set on fire with some fixed probability $p_n$ or fireproof with probability $1-p_n$. An edge which is set on fire burns and sets on fire its flammable neighbors, the fire then propagates in the tree, only stopped by fireproof edges. We study the distribution of the proportion of burnt and fireproof vertices and the sizes of the burnt or fireproof connected components as $n \\to \\infty$ regarding the asymptotic behavior of $p_n$.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"4 1","pages":"355-375"},"PeriodicalIF":1.2000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the sizes of burnt and fireproof components for fires on a large Cayley tree\",\"authors\":\"Cyril Marzouk\",\"doi\":\"10.1214/14-AIHP640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the study initiated by Jean Bertoin in 2012 of a random dynamics on the edges of a uniform Cayley tree with $n$ vertices in which, successively, each edge is either set on fire with some fixed probability $p_n$ or fireproof with probability $1-p_n$. An edge which is set on fire burns and sets on fire its flammable neighbors, the fire then propagates in the tree, only stopped by fireproof edges. We study the distribution of the proportion of burnt and fireproof vertices and the sizes of the burnt or fireproof connected components as $n \\\\to \\\\infty$ regarding the asymptotic behavior of $p_n$.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"4 1\",\"pages\":\"355-375\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/14-AIHP640\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AIHP640","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the sizes of burnt and fireproof components for fires on a large Cayley tree
We continue the study initiated by Jean Bertoin in 2012 of a random dynamics on the edges of a uniform Cayley tree with $n$ vertices in which, successively, each edge is either set on fire with some fixed probability $p_n$ or fireproof with probability $1-p_n$. An edge which is set on fire burns and sets on fire its flammable neighbors, the fire then propagates in the tree, only stopped by fireproof edges. We study the distribution of the proportion of burnt and fireproof vertices and the sizes of the burnt or fireproof connected components as $n \to \infty$ regarding the asymptotic behavior of $p_n$.
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.