在一棵大的凯莱树上燃烧和防火部件的大小

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Cyril Marzouk
{"title":"在一棵大的凯莱树上燃烧和防火部件的大小","authors":"Cyril Marzouk","doi":"10.1214/14-AIHP640","DOIUrl":null,"url":null,"abstract":"We continue the study initiated by Jean Bertoin in 2012 of a random dynamics on the edges of a uniform Cayley tree with $n$ vertices in which, successively, each edge is either set on fire with some fixed probability $p_n$ or fireproof with probability $1-p_n$. An edge which is set on fire burns and sets on fire its flammable neighbors, the fire then propagates in the tree, only stopped by fireproof edges. We study the distribution of the proportion of burnt and fireproof vertices and the sizes of the burnt or fireproof connected components as $n \\to \\infty$ regarding the asymptotic behavior of $p_n$.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"4 1","pages":"355-375"},"PeriodicalIF":1.2000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the sizes of burnt and fireproof components for fires on a large Cayley tree\",\"authors\":\"Cyril Marzouk\",\"doi\":\"10.1214/14-AIHP640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the study initiated by Jean Bertoin in 2012 of a random dynamics on the edges of a uniform Cayley tree with $n$ vertices in which, successively, each edge is either set on fire with some fixed probability $p_n$ or fireproof with probability $1-p_n$. An edge which is set on fire burns and sets on fire its flammable neighbors, the fire then propagates in the tree, only stopped by fireproof edges. We study the distribution of the proportion of burnt and fireproof vertices and the sizes of the burnt or fireproof connected components as $n \\\\to \\\\infty$ regarding the asymptotic behavior of $p_n$.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"4 1\",\"pages\":\"355-375\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/14-AIHP640\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AIHP640","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

我们继续Jean Bertoin在2012年对具有$n$顶点的均匀Cayley树的边的随机动力学的研究,其中每条边依次以固定概率$p_n$着火或以概率$1-p_n$防火。被点燃的边缘燃烧并点燃其易燃的邻居,然后火焰在树木中传播,只有防火边缘才能阻止。根据$p_n$的渐近性,我们研究了燃烧和防火顶点的比例分布以及燃烧或防火连接分量的大小$n \to \infty$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the sizes of burnt and fireproof components for fires on a large Cayley tree
We continue the study initiated by Jean Bertoin in 2012 of a random dynamics on the edges of a uniform Cayley tree with $n$ vertices in which, successively, each edge is either set on fire with some fixed probability $p_n$ or fireproof with probability $1-p_n$. An edge which is set on fire burns and sets on fire its flammable neighbors, the fire then propagates in the tree, only stopped by fireproof edges. We study the distribution of the proportion of burnt and fireproof vertices and the sizes of the burnt or fireproof connected components as $n \to \infty$ regarding the asymptotic behavior of $p_n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信