{"title":"基于mems的双环呼吸模式10.00 MHz gps自律参考振荡器","authors":"M. S. Islam, S. Mandal, G. Xereas, V. Chodavarapu","doi":"10.1109/IFCS-ISAF41089.2020.9234944","DOIUrl":null,"url":null,"abstract":"The frequency stability of reference oscillators (ROs) is a key performance limiter for all applications that require a timing or frequency reference, including precision sensors, inertial navigation systems, and radio frequency (RF) transceivers. This work demonstrates a GPS-disciplined MEMS RO based on injection locking of a ∼10.00 MHz MEMS-referenced oscillator (breath-mode dual ring resonator and custom single-chip CMOS feedback amplifier) to a GPS-disciplined crystal oscillator. The RO has excellent intrinsic short-term stability due to the high quality factor of the resonator ($Q\\approx 85,000$ at a polarization voltage of 19 V). Stability was further optimized by using the programmable phase shift provided by the amplifier, which revealed the existence of a well-defined maximum stability point (MSP). In addition, long-term frequency fluctuations of the unlocked RO were significantly reduced by using an oven and active temperature compensation loop.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"41 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-Ring Breath-Mode MEMS-Based 10.00 MHz GPS-Disciplined Reference Oscillator\",\"authors\":\"M. S. Islam, S. Mandal, G. Xereas, V. Chodavarapu\",\"doi\":\"10.1109/IFCS-ISAF41089.2020.9234944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frequency stability of reference oscillators (ROs) is a key performance limiter for all applications that require a timing or frequency reference, including precision sensors, inertial navigation systems, and radio frequency (RF) transceivers. This work demonstrates a GPS-disciplined MEMS RO based on injection locking of a ∼10.00 MHz MEMS-referenced oscillator (breath-mode dual ring resonator and custom single-chip CMOS feedback amplifier) to a GPS-disciplined crystal oscillator. The RO has excellent intrinsic short-term stability due to the high quality factor of the resonator ($Q\\\\approx 85,000$ at a polarization voltage of 19 V). Stability was further optimized by using the programmable phase shift provided by the amplifier, which revealed the existence of a well-defined maximum stability point (MSP). In addition, long-term frequency fluctuations of the unlocked RO were significantly reduced by using an oven and active temperature compensation loop.\",\"PeriodicalId\":6872,\"journal\":{\"name\":\"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)\",\"volume\":\"41 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dual-Ring Breath-Mode MEMS-Based 10.00 MHz GPS-Disciplined Reference Oscillator
The frequency stability of reference oscillators (ROs) is a key performance limiter for all applications that require a timing or frequency reference, including precision sensors, inertial navigation systems, and radio frequency (RF) transceivers. This work demonstrates a GPS-disciplined MEMS RO based on injection locking of a ∼10.00 MHz MEMS-referenced oscillator (breath-mode dual ring resonator and custom single-chip CMOS feedback amplifier) to a GPS-disciplined crystal oscillator. The RO has excellent intrinsic short-term stability due to the high quality factor of the resonator ($Q\approx 85,000$ at a polarization voltage of 19 V). Stability was further optimized by using the programmable phase shift provided by the amplifier, which revealed the existence of a well-defined maximum stability point (MSP). In addition, long-term frequency fluctuations of the unlocked RO were significantly reduced by using an oven and active temperature compensation loop.