E. Morinaga, Y. Oka, H. Nishimori, H. Miyagawa, R. Satoh, Y. Iwata, R. Kanezaki
{"title":"三维大规模集成电路晶圆级多芯片堆叠的纳米级薄膜控制低温高耐热无熔合研究","authors":"E. Morinaga, Y. Oka, H. Nishimori, H. Miyagawa, R. Satoh, Y. Iwata, R. Kanezaki","doi":"10.1109/ECTC.2012.6248799","DOIUrl":null,"url":null,"abstract":"The three dimensional system in package (3D-SiP) has been regarded as a promising solution to the scaling limit problem in the semiconductor industry. Practical realization of the 3D-SiP needs establishing a standard bonding technology for chip stacking. This research focuses on a low temperature and high heat-resistant fluxless bonding method, which can overcome the bump height variation problem in a chip/wafer, using high-boiling alcohol, an indium-tin (InSn) thin film and its transformation into high-melting intermetallic compound (IMC). Experimental studies showed high-rate deposition of InSn alloy and successive deposition of silver achieve successful bonding where the joint has high melting point (higher than 673K).","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":"4 1","pages":"14-19"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Study of low temperature and high heat-resistant fluxless bonding via nanoscale thin film control toward wafer-level multiple chip stacking for 3D LSI\",\"authors\":\"E. Morinaga, Y. Oka, H. Nishimori, H. Miyagawa, R. Satoh, Y. Iwata, R. Kanezaki\",\"doi\":\"10.1109/ECTC.2012.6248799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The three dimensional system in package (3D-SiP) has been regarded as a promising solution to the scaling limit problem in the semiconductor industry. Practical realization of the 3D-SiP needs establishing a standard bonding technology for chip stacking. This research focuses on a low temperature and high heat-resistant fluxless bonding method, which can overcome the bump height variation problem in a chip/wafer, using high-boiling alcohol, an indium-tin (InSn) thin film and its transformation into high-melting intermetallic compound (IMC). Experimental studies showed high-rate deposition of InSn alloy and successive deposition of silver achieve successful bonding where the joint has high melting point (higher than 673K).\",\"PeriodicalId\":6384,\"journal\":{\"name\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"volume\":\"4 1\",\"pages\":\"14-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2012.6248799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6248799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of low temperature and high heat-resistant fluxless bonding via nanoscale thin film control toward wafer-level multiple chip stacking for 3D LSI
The three dimensional system in package (3D-SiP) has been regarded as a promising solution to the scaling limit problem in the semiconductor industry. Practical realization of the 3D-SiP needs establishing a standard bonding technology for chip stacking. This research focuses on a low temperature and high heat-resistant fluxless bonding method, which can overcome the bump height variation problem in a chip/wafer, using high-boiling alcohol, an indium-tin (InSn) thin film and its transformation into high-melting intermetallic compound (IMC). Experimental studies showed high-rate deposition of InSn alloy and successive deposition of silver achieve successful bonding where the joint has high melting point (higher than 673K).