{"title":"一种优化决策者满意度的单值五边形中性几何规划方法","authors":"Satyabrata Nath, P. Das, P. Debnath","doi":"10.14569/ijacsa.2023.0140439","DOIUrl":null,"url":null,"abstract":"Achieving the desired level of satisfaction for a decision-maker in any decision-making scenario is considered a challenging endeavor because minor modifications in the process might lead to incorrect findings and inaccurate decisions. In order to maximize the decision-maker’s satisfaction, this paper proposes a Single-valued Neutrosophic Geometric Programming model based on pentagonal fuzzy numbers. The decision-maker is typically assumed to be certain of the parameters, but in reality, this is not the case, hence the parameters are presented as neutrosophic fuzzy values. The decision-maker, with this strategy, is able to achieve varying levels of satisfaction and dissatisfaction for each constraint and even complete satisfaction for certain constraints. Here the decision maker aims to achieve the maximum level of satisfaction while maintaining the level of hesitation and minimizing dissatisfaction in order to retain an optimum solution. Furthermore, transforming the objective function into a constraint adds one more layer to the Ndimensional multi-parametrizes and . The advantages of this multi-parametrized proposed method over the existing ones are proven using numerical examples. Keywords—Decision making; pentagonal neutrosophic numbers; single-valued neutrosophic geometric programming; multi-parametric programming","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Single-valued Pentagonal Neutrosophic Geometric Programming Approach to Optimize Decision Maker’s Satisfaction Level\",\"authors\":\"Satyabrata Nath, P. Das, P. Debnath\",\"doi\":\"10.14569/ijacsa.2023.0140439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving the desired level of satisfaction for a decision-maker in any decision-making scenario is considered a challenging endeavor because minor modifications in the process might lead to incorrect findings and inaccurate decisions. In order to maximize the decision-maker’s satisfaction, this paper proposes a Single-valued Neutrosophic Geometric Programming model based on pentagonal fuzzy numbers. The decision-maker is typically assumed to be certain of the parameters, but in reality, this is not the case, hence the parameters are presented as neutrosophic fuzzy values. The decision-maker, with this strategy, is able to achieve varying levels of satisfaction and dissatisfaction for each constraint and even complete satisfaction for certain constraints. Here the decision maker aims to achieve the maximum level of satisfaction while maintaining the level of hesitation and minimizing dissatisfaction in order to retain an optimum solution. Furthermore, transforming the objective function into a constraint adds one more layer to the Ndimensional multi-parametrizes and . The advantages of this multi-parametrized proposed method over the existing ones are proven using numerical examples. Keywords—Decision making; pentagonal neutrosophic numbers; single-valued neutrosophic geometric programming; multi-parametric programming\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Single-valued Pentagonal Neutrosophic Geometric Programming Approach to Optimize Decision Maker’s Satisfaction Level
Achieving the desired level of satisfaction for a decision-maker in any decision-making scenario is considered a challenging endeavor because minor modifications in the process might lead to incorrect findings and inaccurate decisions. In order to maximize the decision-maker’s satisfaction, this paper proposes a Single-valued Neutrosophic Geometric Programming model based on pentagonal fuzzy numbers. The decision-maker is typically assumed to be certain of the parameters, but in reality, this is not the case, hence the parameters are presented as neutrosophic fuzzy values. The decision-maker, with this strategy, is able to achieve varying levels of satisfaction and dissatisfaction for each constraint and even complete satisfaction for certain constraints. Here the decision maker aims to achieve the maximum level of satisfaction while maintaining the level of hesitation and minimizing dissatisfaction in order to retain an optimum solution. Furthermore, transforming the objective function into a constraint adds one more layer to the Ndimensional multi-parametrizes and . The advantages of this multi-parametrized proposed method over the existing ones are proven using numerical examples. Keywords—Decision making; pentagonal neutrosophic numbers; single-valued neutrosophic geometric programming; multi-parametric programming
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications