基于迭代量子位激励的变分量子特征解算器

Y. Yordanov, V. Armaos, C. Barnes, D. Arvidsson-Shukur
{"title":"基于迭代量子位激励的变分量子特征解算器","authors":"Y. Yordanov, V. Armaos, C. Barnes, D. Arvidsson-Shukur","doi":"10.21203/RS.3.RS-404173/V1","DOIUrl":null,"url":null,"abstract":"\n Molecular simulations with the variational quantum eigensolver (VQE) are a promising application for emerging noisy intermediate-scale quantum computers.\nConstructing accurate molecular ansatze that are easy to optimize and implemented by shallow quantum circuits is crucial for the successful implementation of such simulations. \nAnsatze are, generally, constructed as\nseries of fermionic-excitation evolutions.\nInstead, we demonstrate the usefulness of constructing ansatze with ``qubit-excitation evolutions', which, contrary to fermionic excitation evolutions, obey ``qubit commutation relations'.\nWe show that qubit excitation evolutions, despite the lack of some of the physical features of fermionic excitation evolutions, accurately construct ansatze, while requiring asymptotically\nfewer gates.\nUtilizing qubit excitation evolutions, we introduce the iterative qubit excitation based VQE (IQEB-VQE) algorithm.\nThe IQEB-VQE performs molecular simulations using a problem-tailored ansatz, grown iteratively by appending evolutions of single and double qubit excitation operators.\nBy performing numerical simulations for small molecules, we benchmark the IQEB-VQE, and compare it against other competitive VQE algorithms.\nIn terms of circuit efficiency and time complexity, we find that the IQEB-VQE systematically outperforms the previously most circuit-efficient, practically scalable VQE algorithms.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Iterative qubit-excitation based variational quantum eigensolver\",\"authors\":\"Y. Yordanov, V. Armaos, C. Barnes, D. Arvidsson-Shukur\",\"doi\":\"10.21203/RS.3.RS-404173/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Molecular simulations with the variational quantum eigensolver (VQE) are a promising application for emerging noisy intermediate-scale quantum computers.\\nConstructing accurate molecular ansatze that are easy to optimize and implemented by shallow quantum circuits is crucial for the successful implementation of such simulations. \\nAnsatze are, generally, constructed as\\nseries of fermionic-excitation evolutions.\\nInstead, we demonstrate the usefulness of constructing ansatze with ``qubit-excitation evolutions', which, contrary to fermionic excitation evolutions, obey ``qubit commutation relations'.\\nWe show that qubit excitation evolutions, despite the lack of some of the physical features of fermionic excitation evolutions, accurately construct ansatze, while requiring asymptotically\\nfewer gates.\\nUtilizing qubit excitation evolutions, we introduce the iterative qubit excitation based VQE (IQEB-VQE) algorithm.\\nThe IQEB-VQE performs molecular simulations using a problem-tailored ansatz, grown iteratively by appending evolutions of single and double qubit excitation operators.\\nBy performing numerical simulations for small molecules, we benchmark the IQEB-VQE, and compare it against other competitive VQE algorithms.\\nIn terms of circuit efficiency and time complexity, we find that the IQEB-VQE systematically outperforms the previously most circuit-efficient, practically scalable VQE algorithms.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-404173/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-404173/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

变分量子特征求解器(VQE)在新兴的噪声中等规模量子计算机中是一个很有前途的应用。构建易于优化和由浅量子电路实现的精确分子分析对于成功实现此类模拟至关重要。Ansatze通常被构造为一系列费米子激发演化。相反,我们证明了用“量子位激发演化”构造解析的有效性,它与费米子激发演化相反,服从“量子位对易关系”。我们表明,尽管量子比特激发演化缺乏费米子激发演化的一些物理特征,但它可以准确地构建ansatze,同时需要的门数渐近减少。利用量子比特激励演化,提出了基于迭代量子比特激励的VQE算法(IQEB-VQE)。IQEB-VQE使用问题定制的ansatz进行分子模拟,通过附加单量子比特和双量子比特激发算子的进化迭代生长。通过对小分子进行数值模拟,我们对IQEB-VQE进行了基准测试,并将其与其他竞争对手的VQE算法进行了比较。在电路效率和时间复杂度方面,我们发现IQEB-VQE系统地优于以前最有效的电路效率,实际可扩展的VQE算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative qubit-excitation based variational quantum eigensolver
Molecular simulations with the variational quantum eigensolver (VQE) are a promising application for emerging noisy intermediate-scale quantum computers. Constructing accurate molecular ansatze that are easy to optimize and implemented by shallow quantum circuits is crucial for the successful implementation of such simulations. Ansatze are, generally, constructed as series of fermionic-excitation evolutions. Instead, we demonstrate the usefulness of constructing ansatze with ``qubit-excitation evolutions', which, contrary to fermionic excitation evolutions, obey ``qubit commutation relations'. We show that qubit excitation evolutions, despite the lack of some of the physical features of fermionic excitation evolutions, accurately construct ansatze, while requiring asymptotically fewer gates. Utilizing qubit excitation evolutions, we introduce the iterative qubit excitation based VQE (IQEB-VQE) algorithm. The IQEB-VQE performs molecular simulations using a problem-tailored ansatz, grown iteratively by appending evolutions of single and double qubit excitation operators. By performing numerical simulations for small molecules, we benchmark the IQEB-VQE, and compare it against other competitive VQE algorithms. In terms of circuit efficiency and time complexity, we find that the IQEB-VQE systematically outperforms the previously most circuit-efficient, practically scalable VQE algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信