熵,信息和能量

IF 1.1 Q4 QUANTUM SCIENCE & TECHNOLOGY
S. Tiwari
{"title":"熵,信息和能量","authors":"S. Tiwari","doi":"10.1093/oso/9780198759867.003.0002","DOIUrl":null,"url":null,"abstract":"Chapter 2 brings forth the links between entropy and energy through their intimate link to information. Probabilities—as a statistical tool when there are unknowns—connect to information as well as to the various forms of entropy. Entropy is a variable introduced to characterize circumstances involving unknowns. Boltzmann entropy, von Neumann entropy, Shannon entropy and others can be viewed through this common viewpoint. This chapter broadens this discussion to include Fisher entropy—a measure that stresses locality—and the principle of minimum negentropy (or maximum entropy) to show how a variety of physical descriptions represented by equations such as the Schrödinger equation, diffusion equations, Maxwell-Boltzmann distributions, et cetera, can be seen through a probabilistic information-centric perspective.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy, information and energy\",\"authors\":\"S. Tiwari\",\"doi\":\"10.1093/oso/9780198759867.003.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chapter 2 brings forth the links between entropy and energy through their intimate link to information. Probabilities—as a statistical tool when there are unknowns—connect to information as well as to the various forms of entropy. Entropy is a variable introduced to characterize circumstances involving unknowns. Boltzmann entropy, von Neumann entropy, Shannon entropy and others can be viewed through this common viewpoint. This chapter broadens this discussion to include Fisher entropy—a measure that stresses locality—and the principle of minimum negentropy (or maximum entropy) to show how a variety of physical descriptions represented by equations such as the Schrödinger equation, diffusion equations, Maxwell-Boltzmann distributions, et cetera, can be seen through a probabilistic information-centric perspective.\",\"PeriodicalId\":44695,\"journal\":{\"name\":\"Semiconductor Physics Quantum Electronics & Optoelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Physics Quantum Electronics & Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198759867.003.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Physics Quantum Electronics & Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198759867.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

第二章通过熵与能量与信息的密切联系,提出了熵与能量之间的联系。概率——当存在未知时作为一种统计工具——与信息以及各种形式的熵相联系。熵是一个变量,用于描述涉及未知的情况。玻尔兹曼熵、冯·诺伊曼熵、香农熵等都可以通过这个共同的观点来看待。本章扩大了这一讨论,包括费雪熵——一种强调局域性的度量——和最小负熵(或最大熵)原理,以展示如何通过以概率信息为中心的视角来看待各种由方程(如Schrödinger方程、扩散方程、麦克斯韦-玻尔兹曼分布等)表示的物理描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy, information and energy
Chapter 2 brings forth the links between entropy and energy through their intimate link to information. Probabilities—as a statistical tool when there are unknowns—connect to information as well as to the various forms of entropy. Entropy is a variable introduced to characterize circumstances involving unknowns. Boltzmann entropy, von Neumann entropy, Shannon entropy and others can be viewed through this common viewpoint. This chapter broadens this discussion to include Fisher entropy—a measure that stresses locality—and the principle of minimum negentropy (or maximum entropy) to show how a variety of physical descriptions represented by equations such as the Schrödinger equation, diffusion equations, Maxwell-Boltzmann distributions, et cetera, can be seen through a probabilistic information-centric perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
22.20%
发文量
43
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信