前馈神经网络对马尔可夫链M/ M/ c/k的分类

I. Balabanova, S. Kostadinova, V. Markova, G. Georgiev
{"title":"前馈神经网络对马尔可夫链M/ M/ c/k的分类","authors":"I. Balabanova, S. Kostadinova, V. Markova, G. Georgiev","doi":"10.1109/BIA48344.2019.8967461","DOIUrl":null,"url":null,"abstract":"The report presents the study of the possibility of applying Artificial Intelligence to analyze traffic data in order to define their category against the observed circuits for different number of server stations in M/M/c/k queuing model, respectively c= 0, c= 5 and c=20. Feed-forward neural models with Scaled Conjugate Gradient training are used at given “sigmoid” activation types in hidden and “softmax” in output network layers. The selection is performed in range of 3 to 25 intermediate neurons in assessing the information content of five input indicators -”client ID”, “service request time”, “service starting time”, “server id” and “release time of requests”. A model is synthesized for four input variables without the “service request time” parameter and accuracy of 87.7% was achieved. For the established model, the experiment was extended to 39 neural units, to reaching a potential accuracy level of over 90.0%. The highest accuracy of 90.7% is achieved at 33 neurons.","PeriodicalId":6688,"journal":{"name":"2019 International Conference on Biomedical Innovations and Applications (BIA)","volume":"44 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorization of Markov Chains M/ M /c/k by Feed-forward Neural Networks\",\"authors\":\"I. Balabanova, S. Kostadinova, V. Markova, G. Georgiev\",\"doi\":\"10.1109/BIA48344.2019.8967461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The report presents the study of the possibility of applying Artificial Intelligence to analyze traffic data in order to define their category against the observed circuits for different number of server stations in M/M/c/k queuing model, respectively c= 0, c= 5 and c=20. Feed-forward neural models with Scaled Conjugate Gradient training are used at given “sigmoid” activation types in hidden and “softmax” in output network layers. The selection is performed in range of 3 to 25 intermediate neurons in assessing the information content of five input indicators -”client ID”, “service request time”, “service starting time”, “server id” and “release time of requests”. A model is synthesized for four input variables without the “service request time” parameter and accuracy of 87.7% was achieved. For the established model, the experiment was extended to 39 neural units, to reaching a potential accuracy level of over 90.0%. The highest accuracy of 90.7% is achieved at 33 neurons.\",\"PeriodicalId\":6688,\"journal\":{\"name\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"volume\":\"44 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIA48344.2019.8967461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biomedical Innovations and Applications (BIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA48344.2019.8967461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在M/M/c/k排队模型中,c= 0, c= 5, c=20,根据观察到的不同数量的服务器站的电路,研究应用人工智能分析流量数据的可能性,以定义其类别。在给定的“sigmoid”激活类型和输出网络层的“softmax”激活类型下,使用具有缩放共轭梯度训练的前馈神经模型。通过评估“客户端ID”、“服务请求时间”、“服务开始时间”、“服务器ID”和“请求释放时间”五个输入指标的信息含量,在3 - 25个中间神经元范围内进行选择。在不考虑“服务请求时间”参数的情况下,合成了4个输入变量的模型,准确率达到87.7%。对于所建立的模型,实验扩展到39个神经单元,达到了超过90.0%的潜在准确率水平。在33个神经元上达到了90.7%的最高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorization of Markov Chains M/ M /c/k by Feed-forward Neural Networks
The report presents the study of the possibility of applying Artificial Intelligence to analyze traffic data in order to define their category against the observed circuits for different number of server stations in M/M/c/k queuing model, respectively c= 0, c= 5 and c=20. Feed-forward neural models with Scaled Conjugate Gradient training are used at given “sigmoid” activation types in hidden and “softmax” in output network layers. The selection is performed in range of 3 to 25 intermediate neurons in assessing the information content of five input indicators -”client ID”, “service request time”, “service starting time”, “server id” and “release time of requests”. A model is synthesized for four input variables without the “service request time” parameter and accuracy of 87.7% was achieved. For the established model, the experiment was extended to 39 neural units, to reaching a potential accuracy level of over 90.0%. The highest accuracy of 90.7% is achieved at 33 neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信