T. Zheng, C. Su, J. Zhao, X. -. Zhang, T. Y. Zhang, L. R. Zhang, Q. Kan, S. Zhang
{"title":"CYP3A5和CYP2D6基因多态性对地尔硫卓及其代谢物在中国人体内药代动力学的影响","authors":"T. Zheng, C. Su, J. Zhao, X. -. Zhang, T. Y. Zhang, L. R. Zhang, Q. Kan, S. Zhang","doi":"10.4172/0975-0851.S1.013","DOIUrl":null,"url":null,"abstract":"PURPOSE To assess the possibility of using CYP2D6 10 +/- CYP3A5*3 as biomarkers to predict the pharmacokinetics of diltiazem and its two metabolites among healthy Chinese subjects. METHODS 41 healthy Chinese were genotyped for CYP3A5 3 and CYP2D6 10, and then received a single oral dose of diltiazem hydrochloride capsules (300 mg). Multiple blood samples were collected over 48 h, and the plasma concentrations of diltiazem, N-desmethyl diltiazem and desacetyl diltiazem were determined by HPLC-MS/MS. The relationships between the genotypes and pharmacokinetics were investigated. RESULTS The pharmacokinetics of diltiazem, N-desmethyl diltiazem were not significantly affected by both CYP3A5 3 and CYP2D6*10 alleles. However, the systemic exposure of the pharmacologyically active metabolites, desacetyl diltiazem, was 2-fold higher in CYP2D6 10/10 genotype carriers than in 1/10 or 1/1 ones (AUC(o-inf) of CYP2D6 1/1, 1/10 and 10/10 are 398.2 +/- 162.9, 371,0 69.2 and 726.2 +/- 468.1 respectively, p <0.05). CONCLUSIONS Two of the most frequent alleles, CYP3A5 3 and CYP2D6 10, among Chinese do not have major impacts on the disposition of diltiazem and N-desmethyl diltiazem. However, the desacetyl diltiazem showed 2-fold accumulation in individuals with CYP2D6 10/10 genotype. Despite this, the effect of genotype of CYP2D6 on clinical outcome of diltiazem treatment is expected to be limited.","PeriodicalId":86039,"journal":{"name":"Die Pharmazie. Beihefte","volume":"9 7 1","pages":"257-60"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Effects of CYP3A5 and CYP2D6 genetic polymorphism on the pharmacokinetics of diltiazem and its metabolites in Chinese subjects.\",\"authors\":\"T. Zheng, C. Su, J. Zhao, X. -. Zhang, T. Y. Zhang, L. R. Zhang, Q. Kan, S. Zhang\",\"doi\":\"10.4172/0975-0851.S1.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE To assess the possibility of using CYP2D6 10 +/- CYP3A5*3 as biomarkers to predict the pharmacokinetics of diltiazem and its two metabolites among healthy Chinese subjects. METHODS 41 healthy Chinese were genotyped for CYP3A5 3 and CYP2D6 10, and then received a single oral dose of diltiazem hydrochloride capsules (300 mg). Multiple blood samples were collected over 48 h, and the plasma concentrations of diltiazem, N-desmethyl diltiazem and desacetyl diltiazem were determined by HPLC-MS/MS. The relationships between the genotypes and pharmacokinetics were investigated. RESULTS The pharmacokinetics of diltiazem, N-desmethyl diltiazem were not significantly affected by both CYP3A5 3 and CYP2D6*10 alleles. However, the systemic exposure of the pharmacologyically active metabolites, desacetyl diltiazem, was 2-fold higher in CYP2D6 10/10 genotype carriers than in 1/10 or 1/1 ones (AUC(o-inf) of CYP2D6 1/1, 1/10 and 10/10 are 398.2 +/- 162.9, 371,0 69.2 and 726.2 +/- 468.1 respectively, p <0.05). CONCLUSIONS Two of the most frequent alleles, CYP3A5 3 and CYP2D6 10, among Chinese do not have major impacts on the disposition of diltiazem and N-desmethyl diltiazem. However, the desacetyl diltiazem showed 2-fold accumulation in individuals with CYP2D6 10/10 genotype. Despite this, the effect of genotype of CYP2D6 on clinical outcome of diltiazem treatment is expected to be limited.\",\"PeriodicalId\":86039,\"journal\":{\"name\":\"Die Pharmazie. Beihefte\",\"volume\":\"9 7 1\",\"pages\":\"257-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Die Pharmazie. Beihefte\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/0975-0851.S1.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Die Pharmazie. Beihefte","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/0975-0851.S1.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of CYP3A5 and CYP2D6 genetic polymorphism on the pharmacokinetics of diltiazem and its metabolites in Chinese subjects.
PURPOSE To assess the possibility of using CYP2D6 10 +/- CYP3A5*3 as biomarkers to predict the pharmacokinetics of diltiazem and its two metabolites among healthy Chinese subjects. METHODS 41 healthy Chinese were genotyped for CYP3A5 3 and CYP2D6 10, and then received a single oral dose of diltiazem hydrochloride capsules (300 mg). Multiple blood samples were collected over 48 h, and the plasma concentrations of diltiazem, N-desmethyl diltiazem and desacetyl diltiazem were determined by HPLC-MS/MS. The relationships between the genotypes and pharmacokinetics were investigated. RESULTS The pharmacokinetics of diltiazem, N-desmethyl diltiazem were not significantly affected by both CYP3A5 3 and CYP2D6*10 alleles. However, the systemic exposure of the pharmacologyically active metabolites, desacetyl diltiazem, was 2-fold higher in CYP2D6 10/10 genotype carriers than in 1/10 or 1/1 ones (AUC(o-inf) of CYP2D6 1/1, 1/10 and 10/10 are 398.2 +/- 162.9, 371,0 69.2 and 726.2 +/- 468.1 respectively, p <0.05). CONCLUSIONS Two of the most frequent alleles, CYP3A5 3 and CYP2D6 10, among Chinese do not have major impacts on the disposition of diltiazem and N-desmethyl diltiazem. However, the desacetyl diltiazem showed 2-fold accumulation in individuals with CYP2D6 10/10 genotype. Despite this, the effect of genotype of CYP2D6 on clinical outcome of diltiazem treatment is expected to be limited.