关联数据基础真值定量和定性评价关系图解释卷积网络知识图链接预测

Nicholas F Halliwell, Fabien L. Gandon, F. Lécué
{"title":"关联数据基础真值定量和定性评价关系图解释卷积网络知识图链接预测","authors":"Nicholas F Halliwell, Fabien L. Gandon, F. Lécué","doi":"10.1145/3486622.3493921","DOIUrl":null,"url":null,"abstract":"Relational Graph Convolutional Networks (RGCNs) identify relationships within a Knowledge Graph to learn real-valued embeddings for each node and edge. Recently, researchers have proposed explanation methods to interpret the predictions of these black-box models. However, comparisons across explanation methods for link prediction remains difficult, as there is neither a method nor dataset to compare explanations against. Furthermore, there exists no standard evaluation metric to identify when one explanation method is preferable to the other. In this paper, we leverage linked data to propose a method, including two datasets (Royalty-20k, and Royalty-30k), to benchmark explanation methods on the task of explainable link prediction using Graph Neural Networks. In particular, we rely on the Semantic Web to construct explanations, ensuring that each predictable triple has an associated set of triples providing a ground truth explanation. Additionally, we propose the use of a scoring metric for empirically evaluating explanation methods, allowing for a quantitative comparison. We benchmark these datasets on state-of-the-art link prediction explanation methods using the defined scoring metric, and quantify the different types of errors made with respect to both data and semantics.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Linked Data Ground Truth for Quantitative and Qualitative Evaluation of Explanations for Relational Graph Convolutional Network Link Prediction on Knowledge Graphs\",\"authors\":\"Nicholas F Halliwell, Fabien L. Gandon, F. Lécué\",\"doi\":\"10.1145/3486622.3493921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relational Graph Convolutional Networks (RGCNs) identify relationships within a Knowledge Graph to learn real-valued embeddings for each node and edge. Recently, researchers have proposed explanation methods to interpret the predictions of these black-box models. However, comparisons across explanation methods for link prediction remains difficult, as there is neither a method nor dataset to compare explanations against. Furthermore, there exists no standard evaluation metric to identify when one explanation method is preferable to the other. In this paper, we leverage linked data to propose a method, including two datasets (Royalty-20k, and Royalty-30k), to benchmark explanation methods on the task of explainable link prediction using Graph Neural Networks. In particular, we rely on the Semantic Web to construct explanations, ensuring that each predictable triple has an associated set of triples providing a ground truth explanation. Additionally, we propose the use of a scoring metric for empirically evaluating explanation methods, allowing for a quantitative comparison. We benchmark these datasets on state-of-the-art link prediction explanation methods using the defined scoring metric, and quantify the different types of errors made with respect to both data and semantics.\",\"PeriodicalId\":89230,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3486622.3493921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3493921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

关系图卷积网络(RGCNs)识别知识图中的关系,以学习每个节点和边缘的实值嵌入。最近,研究人员提出了解释方法来解释这些黑箱模型的预测。然而,链接预测的解释方法之间的比较仍然很困难,因为既没有方法也没有数据集来比较解释。此外,没有标准的评价指标来确定一种解释方法何时优于另一种解释方法。在本文中,我们利用链接数据提出了一种方法,包括两个数据集(Royalty-20k和Royalty-30k),对使用图神经网络进行可解释链接预测任务的解释方法进行基准测试。特别是,我们依赖语义Web来构建解释,确保每个可预测的三元组都有一组相关的三元组,提供基本的事实解释。此外,我们建议使用评分指标来经验地评估解释方法,允许进行定量比较。我们使用定义的评分指标对这些数据集在最先进的链接预测解释方法上进行基准测试,并量化与数据和语义相关的不同类型的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linked Data Ground Truth for Quantitative and Qualitative Evaluation of Explanations for Relational Graph Convolutional Network Link Prediction on Knowledge Graphs
Relational Graph Convolutional Networks (RGCNs) identify relationships within a Knowledge Graph to learn real-valued embeddings for each node and edge. Recently, researchers have proposed explanation methods to interpret the predictions of these black-box models. However, comparisons across explanation methods for link prediction remains difficult, as there is neither a method nor dataset to compare explanations against. Furthermore, there exists no standard evaluation metric to identify when one explanation method is preferable to the other. In this paper, we leverage linked data to propose a method, including two datasets (Royalty-20k, and Royalty-30k), to benchmark explanation methods on the task of explainable link prediction using Graph Neural Networks. In particular, we rely on the Semantic Web to construct explanations, ensuring that each predictable triple has an associated set of triples providing a ground truth explanation. Additionally, we propose the use of a scoring metric for empirically evaluating explanation methods, allowing for a quantitative comparison. We benchmark these datasets on state-of-the-art link prediction explanation methods using the defined scoring metric, and quantify the different types of errors made with respect to both data and semantics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信