M3NetFlow:用于综合多原子数据分析的新型多尺度多跳图人工智能模型。

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Heming Zhang, S Peter Goedegebuure, Li Ding, David DeNardo, Ryan C Fields, Yixin Chen, Philip Payne, Fuhai Li
{"title":"M3NetFlow:用于综合多原子数据分析的新型多尺度多跳图人工智能模型。","authors":"Heming Zhang, S Peter Goedegebuure, Li Ding, David DeNardo, Ryan C Fields, Yixin Chen, Philip Payne, Fuhai Li","doi":"10.1101/2023.06.15.545130","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-omic data-driven studies, characterizing complex disease signaling system from multiple levels, are at the forefront of precision medicine and healthcare. The integration and interpretation of multi-omic data are essential for identifying molecular targets and deciphering core signaling pathways of complex diseases. However, it remains an open problem due the large number of biomarkers and complex interactions among them. In this study, we propose a novel Multi-scale Multi-hop Multi-omic graph model, <i>M3NetFlow</i>, to facilitate generic multi-omic data analysis to rank targets and infer core signaling flows/pathways. To evaluate M3NetFlow, we applied it in two independent multi-omic case studies: 1) uncovering mechanisms of synergistic drug combination response (defined as anchor-target guided learning), and 2) identifying biomarkers and pathways of Alzheimer 's disease (AD). The evaluation and comparison results showed <i>M3NetFlow</i> achieves the best prediction accuracy (accurate), and identifies a set of essential targets and core signaling pathways (interpretable). The model can be directly applied to other multi-omic data-driven studies. The code is publicly accessible at: https://github.com/FuhaiLiAiLab/M3NetFlow.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"30 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398409/pdf/","citationCount":"0","resultStr":"{\"title\":\"M3NetFlow: A novel multi-scale multi-hop graph AI model for integrative multi-omic data analysis.\",\"authors\":\"Heming Zhang, S Peter Goedegebuure, Li Ding, David DeNardo, Ryan C Fields, Yixin Chen, Philip Payne, Fuhai Li\",\"doi\":\"10.1101/2023.06.15.545130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-omic data-driven studies, characterizing complex disease signaling system from multiple levels, are at the forefront of precision medicine and healthcare. The integration and interpretation of multi-omic data are essential for identifying molecular targets and deciphering core signaling pathways of complex diseases. However, it remains an open problem due the large number of biomarkers and complex interactions among them. In this study, we propose a novel Multi-scale Multi-hop Multi-omic graph model, <i>M3NetFlow</i>, to facilitate generic multi-omic data analysis to rank targets and infer core signaling flows/pathways. To evaluate M3NetFlow, we applied it in two independent multi-omic case studies: 1) uncovering mechanisms of synergistic drug combination response (defined as anchor-target guided learning), and 2) identifying biomarkers and pathways of Alzheimer 's disease (AD). The evaluation and comparison results showed <i>M3NetFlow</i> achieves the best prediction accuracy (accurate), and identifies a set of essential targets and core signaling pathways (interpretable). The model can be directly applied to other multi-omic data-driven studies. The code is publicly accessible at: https://github.com/FuhaiLiAiLab/M3NetFlow.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.06.15.545130\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.15.545130","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多组学数据驱动的研究从多个层面描述复杂疾病信号系统的特征,是精准医学和医疗保健的前沿。整合和解读多组学数据对于确定分子靶点和破译复杂疾病的核心信号通路至关重要。然而,由于生物标记物数量庞大且相互之间存在复杂的相互作用,这仍然是一个有待解决的问题。在本研究中,我们提出了一种新颖的多尺度多跳多原子图模型--M3NetFlow,以促进通用多原子数据分析,从而对靶标进行排序并推断核心信号流/通路。为了评估 M3NetFlow,我们将其应用于两个独立的多组学案例研究:1)发现协同药物组合反应的机制(定义为锚靶标引导学习);2)确定阿尔茨海默病(AD)的生物标志物和通路。评估和比较结果表明,M3NetFlow 实现了最佳预测精度(准确),并确定了一组基本靶点和核心信号通路(可解释)。该模型可直接应用于其他多组学数据驱动的研究。代码可公开访问:https://github.com/FuhaiLiAiLab/M3NetFlow。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M3NetFlow: A novel multi-scale multi-hop graph AI model for integrative multi-omic data analysis.

Multi-omic data-driven studies, characterizing complex disease signaling system from multiple levels, are at the forefront of precision medicine and healthcare. The integration and interpretation of multi-omic data are essential for identifying molecular targets and deciphering core signaling pathways of complex diseases. However, it remains an open problem due the large number of biomarkers and complex interactions among them. In this study, we propose a novel Multi-scale Multi-hop Multi-omic graph model, M3NetFlow, to facilitate generic multi-omic data analysis to rank targets and infer core signaling flows/pathways. To evaluate M3NetFlow, we applied it in two independent multi-omic case studies: 1) uncovering mechanisms of synergistic drug combination response (defined as anchor-target guided learning), and 2) identifying biomarkers and pathways of Alzheimer 's disease (AD). The evaluation and comparison results showed M3NetFlow achieves the best prediction accuracy (accurate), and identifies a set of essential targets and core signaling pathways (interpretable). The model can be directly applied to other multi-omic data-driven studies. The code is publicly accessible at: https://github.com/FuhaiLiAiLab/M3NetFlow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信