海参去内脏后体腔液中细菌的时间动态

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Zhang, Zichao Yu, Zhuang Xue, Huan Li, J. Zhu, Liyan Wang, L. Song
{"title":"海参去内脏后体腔液中细菌的时间动态","authors":"C. Zhang, Zichao Yu, Zhuang Xue, Huan Li, J. Zhu, Liyan Wang, L. Song","doi":"10.25431/1824-307X/ISJ.V18I1.46-55","DOIUrl":null,"url":null,"abstract":"Sea cucumbers have been emerged as important models to study organ regeneration and development owing to the capacity to regenerate its organs quickly after evisceration. Evisceration is a special defense mechanism for sea cucumber to eject all of internal organs when they encounter predators or adverse environmental conditions. However, little was known about the dynamics of bacterial community in coelomic fluid after evisceration. In the present study, evisceration was induced by intracelomic injection of 0.35 M KCl, and the significantly alternation of bacterial community in coelomic fluid of sea cucumber Apostichopus japonicus was observed with lower diversity and total bacterial load at 7 dpe (days post evisceration) and 14 dpe. The bacterial community was tended to restore at 28 dpe. In particular, relative abundances of Bacteroidetes and Rubritaleaceae, which involved in degradation of polysaccharides and lipid, increased significantly at 7 dpe (p < 0.05), and returned to the original level at 28 dpe. In addition, the predicted functions of bacterial community indicated that the bacteria associated with metabolism pathways of amino acid, lipid and carbohydrate also increased significantly at 7 dpe. These results suggested that the bacterial community in coelomic fluid of A. japonicus was highly dynamic and could rebuild a stable community structure after evisceration. It was suggested that the enriched metabolic related beneficial bacteria at early stage played a role after evisceration in terms of decomposing polysaccharides and lipid to provide energy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The temporal dynamics of bacteria in the coelomic fluid of sea cucumber Apostichopus japonicus after evisceration\",\"authors\":\"C. Zhang, Zichao Yu, Zhuang Xue, Huan Li, J. Zhu, Liyan Wang, L. Song\",\"doi\":\"10.25431/1824-307X/ISJ.V18I1.46-55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea cucumbers have been emerged as important models to study organ regeneration and development owing to the capacity to regenerate its organs quickly after evisceration. Evisceration is a special defense mechanism for sea cucumber to eject all of internal organs when they encounter predators or adverse environmental conditions. However, little was known about the dynamics of bacterial community in coelomic fluid after evisceration. In the present study, evisceration was induced by intracelomic injection of 0.35 M KCl, and the significantly alternation of bacterial community in coelomic fluid of sea cucumber Apostichopus japonicus was observed with lower diversity and total bacterial load at 7 dpe (days post evisceration) and 14 dpe. The bacterial community was tended to restore at 28 dpe. In particular, relative abundances of Bacteroidetes and Rubritaleaceae, which involved in degradation of polysaccharides and lipid, increased significantly at 7 dpe (p < 0.05), and returned to the original level at 28 dpe. In addition, the predicted functions of bacterial community indicated that the bacteria associated with metabolism pathways of amino acid, lipid and carbohydrate also increased significantly at 7 dpe. These results suggested that the bacterial community in coelomic fluid of A. japonicus was highly dynamic and could rebuild a stable community structure after evisceration. It was suggested that the enriched metabolic related beneficial bacteria at early stage played a role after evisceration in terms of decomposing polysaccharides and lipid to provide energy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.25431/1824-307X/ISJ.V18I1.46-55\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.25431/1824-307X/ISJ.V18I1.46-55","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

由于海参在内脏切除后具有快速再生的能力,它已成为研究器官再生和发育的重要模型。内脏是海参在遇到捕食者或不利的环境条件时,将体内所有器官排出体外的一种特殊的防御机制。然而,对内脏取出后体腔液中细菌群落的动态知之甚少。本研究采用0.35 M KCl腹腔内注射诱导去除内脏,观察到刺参体腔液细菌群落在去除内脏7 d和14 d时发生显著变化,细菌多样性和总细菌载量均较低。细菌群落在28 dpe时趋于恢复。特别是参与多糖和脂质降解的Bacteroidetes和Rubritaleaceae的相对丰度在7 dpe时显著增加(p < 0.05),在28 dpe时恢复到原来的水平。此外,细菌群落的预测功能表明,与氨基酸、脂质和碳水化合物代谢途径相关的细菌在7 dpe时也显著增加。这些结果表明,日本刺参体肠液中的细菌群落具有高度的动态性,在去内脏后可以重建稳定的群落结构。由此可见,早期富集的代谢相关有益菌在去内脏后发挥了分解多糖和脂质提供能量的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The temporal dynamics of bacteria in the coelomic fluid of sea cucumber Apostichopus japonicus after evisceration
Sea cucumbers have been emerged as important models to study organ regeneration and development owing to the capacity to regenerate its organs quickly after evisceration. Evisceration is a special defense mechanism for sea cucumber to eject all of internal organs when they encounter predators or adverse environmental conditions. However, little was known about the dynamics of bacterial community in coelomic fluid after evisceration. In the present study, evisceration was induced by intracelomic injection of 0.35 M KCl, and the significantly alternation of bacterial community in coelomic fluid of sea cucumber Apostichopus japonicus was observed with lower diversity and total bacterial load at 7 dpe (days post evisceration) and 14 dpe. The bacterial community was tended to restore at 28 dpe. In particular, relative abundances of Bacteroidetes and Rubritaleaceae, which involved in degradation of polysaccharides and lipid, increased significantly at 7 dpe (p < 0.05), and returned to the original level at 28 dpe. In addition, the predicted functions of bacterial community indicated that the bacteria associated with metabolism pathways of amino acid, lipid and carbohydrate also increased significantly at 7 dpe. These results suggested that the bacterial community in coelomic fluid of A. japonicus was highly dynamic and could rebuild a stable community structure after evisceration. It was suggested that the enriched metabolic related beneficial bacteria at early stage played a role after evisceration in terms of decomposing polysaccharides and lipid to provide energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信