Colin Warn, A. Sherehiy, Moath H. A. Alqatamin, Brooke Ritz, Ruoshi Zhang, S. Chowdhury, Danming Wei, D. Popa
{"title":"微型机器人(sAFAM)的机器视觉跟踪与自动化","authors":"Colin Warn, A. Sherehiy, Moath H. A. Alqatamin, Brooke Ritz, Ruoshi Zhang, S. Chowdhury, Danming Wei, D. Popa","doi":"10.1115/msec2022-85424","DOIUrl":null,"url":null,"abstract":"\n In this paper, we propose a method for tracking a microrobot’s three-dimensional position using microscope machine vision. The microrobot, theSolid Articulated Four Axis Microrobot (sAFAM), is being developed to enable the assembly and manipulation of micro and nanoscale objects. In the future, arrays of sAFAMS working together can be integrated into a wafer-scale nanofactory, Prior to use, microrobots in this microfactory need calibration, which can be achieved using the proposed measurement technique. Our approach enables faster and more accurate mapping of microrobot translations and rotations, and orders of magnitude larger datasets can be created by automation. Cameras feeds on a custom microscopy system is fed into a data processing pipeline that enables tracking of the microrobot in real-time. This particular machine vision method was implemented with a help of OpenCV and Python and can be used to track the movement of other micrometer-sized features. Additionally, a script was created to enable automated repeatability tests for each of the six trajectories traversable by the robot. A more precise microrobot workable area was also determined thanks to the significantly larger datasets enabled by the combined automation and machine vision approaches.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Vision Tracking and Automation of a Microrobot (sAFAM)\",\"authors\":\"Colin Warn, A. Sherehiy, Moath H. A. Alqatamin, Brooke Ritz, Ruoshi Zhang, S. Chowdhury, Danming Wei, D. Popa\",\"doi\":\"10.1115/msec2022-85424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we propose a method for tracking a microrobot’s three-dimensional position using microscope machine vision. The microrobot, theSolid Articulated Four Axis Microrobot (sAFAM), is being developed to enable the assembly and manipulation of micro and nanoscale objects. In the future, arrays of sAFAMS working together can be integrated into a wafer-scale nanofactory, Prior to use, microrobots in this microfactory need calibration, which can be achieved using the proposed measurement technique. Our approach enables faster and more accurate mapping of microrobot translations and rotations, and orders of magnitude larger datasets can be created by automation. Cameras feeds on a custom microscopy system is fed into a data processing pipeline that enables tracking of the microrobot in real-time. This particular machine vision method was implemented with a help of OpenCV and Python and can be used to track the movement of other micrometer-sized features. Additionally, a script was created to enable automated repeatability tests for each of the six trajectories traversable by the robot. A more precise microrobot workable area was also determined thanks to the significantly larger datasets enabled by the combined automation and machine vision approaches.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Machine Vision Tracking and Automation of a Microrobot (sAFAM)
In this paper, we propose a method for tracking a microrobot’s three-dimensional position using microscope machine vision. The microrobot, theSolid Articulated Four Axis Microrobot (sAFAM), is being developed to enable the assembly and manipulation of micro and nanoscale objects. In the future, arrays of sAFAMS working together can be integrated into a wafer-scale nanofactory, Prior to use, microrobots in this microfactory need calibration, which can be achieved using the proposed measurement technique. Our approach enables faster and more accurate mapping of microrobot translations and rotations, and orders of magnitude larger datasets can be created by automation. Cameras feeds on a custom microscopy system is fed into a data processing pipeline that enables tracking of the microrobot in real-time. This particular machine vision method was implemented with a help of OpenCV and Python and can be used to track the movement of other micrometer-sized features. Additionally, a script was created to enable automated repeatability tests for each of the six trajectories traversable by the robot. A more precise microrobot workable area was also determined thanks to the significantly larger datasets enabled by the combined automation and machine vision approaches.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.