基于SOT-MRAM的DNN推理模拟内存计算

J. Doevenspeck, K. Garello, B. Verhoef, R. Degraeve, S. Van Beek, D. Crotti, F. Yasin, S. Couet, G. Jayakumar, I. Papistas, P. Debacker, R. Lauwereins, W. Dehaene, G. Kar, S. Cosemans, A. Mallik, D. Verkest
{"title":"基于SOT-MRAM的DNN推理模拟内存计算","authors":"J. Doevenspeck, K. Garello, B. Verhoef, R. Degraeve, S. Van Beek, D. Crotti, F. Yasin, S. Couet, G. Jayakumar, I. Papistas, P. Debacker, R. Lauwereins, W. Dehaene, G. Kar, S. Cosemans, A. Mallik, D. Verkest","doi":"10.1109/VLSITechnology18217.2020.9265099","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) inference requires a massive amount of matrix-vector multiplications which can be computed efficiently on memory arrays in an analog fashion. This approach requires highly resistive memory devices $(> \\mathrm{M}\\Omega)$ with low resistance variability to implement DNN weight memories. We propose an optimized Spin-Orbit Torque MRAM (SOT-MRAM) as weight memory in Analog in-Memory Computing (AiMC) systems for DNN inference. In SOT-MRAM the write and read path are decoupled. This allows changing the MTJ resistance to the high levels required for AiMC by tuning the tunnel barrier thickness without affecting the writing. The target resistance level and variation are derived from an algorithm driven design-technology-co-optimization (DTCO) study. Resistance levels are obtained from IR-drop simulations of a convolutional neural network (CNN). Variation limits are obtained by testing two noise-resilient CNNs with conductance variability. Finally, we demonstrate experimentally that the requirements for analog DNN inference are met by SOT-MRAM stack optimization.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"82 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"SOT-MRAM based Analog in-Memory Computing for DNN inference\",\"authors\":\"J. Doevenspeck, K. Garello, B. Verhoef, R. Degraeve, S. Van Beek, D. Crotti, F. Yasin, S. Couet, G. Jayakumar, I. Papistas, P. Debacker, R. Lauwereins, W. Dehaene, G. Kar, S. Cosemans, A. Mallik, D. Verkest\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network (DNN) inference requires a massive amount of matrix-vector multiplications which can be computed efficiently on memory arrays in an analog fashion. This approach requires highly resistive memory devices $(> \\\\mathrm{M}\\\\Omega)$ with low resistance variability to implement DNN weight memories. We propose an optimized Spin-Orbit Torque MRAM (SOT-MRAM) as weight memory in Analog in-Memory Computing (AiMC) systems for DNN inference. In SOT-MRAM the write and read path are decoupled. This allows changing the MTJ resistance to the high levels required for AiMC by tuning the tunnel barrier thickness without affecting the writing. The target resistance level and variation are derived from an algorithm driven design-technology-co-optimization (DTCO) study. Resistance levels are obtained from IR-drop simulations of a convolutional neural network (CNN). Variation limits are obtained by testing two noise-resilient CNNs with conductance variability. Finally, we demonstrate experimentally that the requirements for analog DNN inference are met by SOT-MRAM stack optimization.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"82 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

深度神经网络(DNN)推理需要大量的矩阵向量乘法,这些矩阵向量乘法可以在内存阵列上以模拟方式有效地计算。这种方法需要具有低电阻变异性的高电阻存储器$(> \ mathm {M}\Omega)$来实现DNN权重存储器。我们提出了一种优化的自旋-轨道扭矩MRAM (SOT-MRAM)作为模拟内存计算(AiMC)系统中DNN推理的权重存储器。在SOT-MRAM中,写路径和读路径是解耦的。这允许在不影响写入的情况下,通过调整隧道势垒厚度,将MTJ电阻更改为AiMC所需的高水平。通过算法驱动的设计-技术-协同优化(DTCO)研究得出了目标阻力水平和变化。电阻水平是通过卷积神经网络(CNN)的IR-drop模拟得到的。通过测试两个具有电导可变性的噪声弹性cnn,得到了变化极限。最后,我们通过实验证明了SOT-MRAM堆栈优化可以满足模拟DNN推理的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOT-MRAM based Analog in-Memory Computing for DNN inference
Deep neural network (DNN) inference requires a massive amount of matrix-vector multiplications which can be computed efficiently on memory arrays in an analog fashion. This approach requires highly resistive memory devices $(> \mathrm{M}\Omega)$ with low resistance variability to implement DNN weight memories. We propose an optimized Spin-Orbit Torque MRAM (SOT-MRAM) as weight memory in Analog in-Memory Computing (AiMC) systems for DNN inference. In SOT-MRAM the write and read path are decoupled. This allows changing the MTJ resistance to the high levels required for AiMC by tuning the tunnel barrier thickness without affecting the writing. The target resistance level and variation are derived from an algorithm driven design-technology-co-optimization (DTCO) study. Resistance levels are obtained from IR-drop simulations of a convolutional neural network (CNN). Variation limits are obtained by testing two noise-resilient CNNs with conductance variability. Finally, we demonstrate experimentally that the requirements for analog DNN inference are met by SOT-MRAM stack optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信