附在一个或两个半无限平板上的有限圆柱体的势和波方程

G. Wexler, C. Taylor
{"title":"附在一个或两个半无限平板上的有限圆柱体的势和波方程","authors":"G. Wexler, C. Taylor","doi":"10.1088/0508-3443/18/11/302","DOIUrl":null,"url":null,"abstract":"A detailed solution of Laplace's equation is obtained with boundary conditions appropriate for the study of classical transport through cylindrical constrictions. The potential, which is expressed in the spheroidal harmonic representation, can be used to describe the electrical and thermal spreading resistance problems and similar problems occurring in gaseous diffusion, magnetism, hydrodynamics and scalar diffraction theory (e.g. for acoustics) in the long-wavelength limit. The argument is based on standard variational and eigenfunction methods. A summary is given of the procedure required for adapting it to obtain solutions for the same configuration with different boundary conditions and also for the wave equation replacing Laplace's equation.","PeriodicalId":9350,"journal":{"name":"British Journal of Applied Physics","volume":"146 1","pages":"1517-1526"},"PeriodicalIF":0.0000,"publicationDate":"1967-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The potential and wave equations for a finite cylinder attached to one or two semi-infinite slabs\",\"authors\":\"G. Wexler, C. Taylor\",\"doi\":\"10.1088/0508-3443/18/11/302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed solution of Laplace's equation is obtained with boundary conditions appropriate for the study of classical transport through cylindrical constrictions. The potential, which is expressed in the spheroidal harmonic representation, can be used to describe the electrical and thermal spreading resistance problems and similar problems occurring in gaseous diffusion, magnetism, hydrodynamics and scalar diffraction theory (e.g. for acoustics) in the long-wavelength limit. The argument is based on standard variational and eigenfunction methods. A summary is given of the procedure required for adapting it to obtain solutions for the same configuration with different boundary conditions and also for the wave equation replacing Laplace's equation.\",\"PeriodicalId\":9350,\"journal\":{\"name\":\"British Journal of Applied Physics\",\"volume\":\"146 1\",\"pages\":\"1517-1526\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0508-3443/18/11/302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0508-3443/18/11/302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了拉普拉斯方程的详细解,其边界条件适合于研究经典的圆柱缩窄输运。用球谐表示的势可以用来描述长波长极限下的电和热扩散电阻问题,以及气体扩散、磁学、流体力学和标量衍射理论(如声学)中出现的类似问题。该论证基于标准变分方法和特征函数方法。总结了用它来求具有不同边界条件的相同构型的解和用波动方程代替拉普拉斯方程的解所需要的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The potential and wave equations for a finite cylinder attached to one or two semi-infinite slabs
A detailed solution of Laplace's equation is obtained with boundary conditions appropriate for the study of classical transport through cylindrical constrictions. The potential, which is expressed in the spheroidal harmonic representation, can be used to describe the electrical and thermal spreading resistance problems and similar problems occurring in gaseous diffusion, magnetism, hydrodynamics and scalar diffraction theory (e.g. for acoustics) in the long-wavelength limit. The argument is based on standard variational and eigenfunction methods. A summary is given of the procedure required for adapting it to obtain solutions for the same configuration with different boundary conditions and also for the wave equation replacing Laplace's equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信