基于逆尺度空间和Contourlet阈值的MRI重构

Wenshu Li, Jianhua Luo, Qiegen Liu, S. Hu
{"title":"基于逆尺度空间和Contourlet阈值的MRI重构","authors":"Wenshu Li, Jianhua Luo, Qiegen Liu, S. Hu","doi":"10.1109/BMEI.2009.5305033","DOIUrl":null,"url":null,"abstract":"in clinical Magnetic Resonance Imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. In this paper we proposed a reconstruction algorithm by applying contourlet thresholding in inverse scale space flows. We improved the inverse scale space with the noise item in which there is some meaning information and take full advantage of coutourlet transform's characters: perfect reconstruction, noise restraint and good directional selectivity. Several example MRI reconstructions from highly undersampled K-space data are presented for recovery of detailed features from incomplete and inaccurate measurements. Keywords-MRI; Inverse Scale Space; reconstruction;contourlet","PeriodicalId":6389,"journal":{"name":"2009 2nd International Conference on Biomedical Engineering and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRI Reconstruction Based on Inverse Scale Space and Contourlet Thresholding\",\"authors\":\"Wenshu Li, Jianhua Luo, Qiegen Liu, S. Hu\",\"doi\":\"10.1109/BMEI.2009.5305033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"in clinical Magnetic Resonance Imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. In this paper we proposed a reconstruction algorithm by applying contourlet thresholding in inverse scale space flows. We improved the inverse scale space with the noise item in which there is some meaning information and take full advantage of coutourlet transform's characters: perfect reconstruction, noise restraint and good directional selectivity. Several example MRI reconstructions from highly undersampled K-space data are presented for recovery of detailed features from incomplete and inaccurate measurements. Keywords-MRI; Inverse Scale Space; reconstruction;contourlet\",\"PeriodicalId\":6389,\"journal\":{\"name\":\"2009 2nd International Conference on Biomedical Engineering and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Conference on Biomedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2009.5305033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2009.5305033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在临床磁共振成像(MRI)中,任何扫描时间的减少都提供了许多潜在的好处,从对生理过程的高时间率观察到患者舒适度的改善。本文提出了一种基于contourlet阈值的反尺度空间流重构算法。我们利用含有意义信息的噪声项对逆尺度空间进行了改进,充分利用了库图let变换重构完善、噪声抑制和方向选择性好的特点。从高度欠采样k空间数据的几个例子MRI重建提出了详细的特征从不完整和不准确的测量恢复。Keywords-MRI;逆尺度空间;重建;contourlet
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRI Reconstruction Based on Inverse Scale Space and Contourlet Thresholding
in clinical Magnetic Resonance Imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. In this paper we proposed a reconstruction algorithm by applying contourlet thresholding in inverse scale space flows. We improved the inverse scale space with the noise item in which there is some meaning information and take full advantage of coutourlet transform's characters: perfect reconstruction, noise restraint and good directional selectivity. Several example MRI reconstructions from highly undersampled K-space data are presented for recovery of detailed features from incomplete and inaccurate measurements. Keywords-MRI; Inverse Scale Space; reconstruction;contourlet
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信