M. Roshanzamir, Mahdi Roshanzamir, Abdolreza Mirzaei, M. Darbandy, A. Shoeibi, R. Alizadehsani, F. Khozeimeh, A. Khosravi
{"title":"基于条件随机场的图像序列面部表情自动识别","authors":"M. Roshanzamir, Mahdi Roshanzamir, Abdolreza Mirzaei, M. Darbandy, A. Shoeibi, R. Alizadehsani, F. Khozeimeh, A. Khosravi","doi":"10.1109/CINTI-MACRo57952.2022.10029507","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is one of the fields that nowadays has attracted the attention of many researchers. It is possible to automate facial expression recognition using artificial intelligence methods. This will be of great help to researchers, especially in areas such as psychology. Automatic facial recognition can be derived from a static image of facial expression, but a better and more efficient way to do this is through a sequence of images. In this paper, a new method is proposed to automatically detect facial expressions from a sequence of images. Each sequence of facial images begins with a face neutral state and ends with one of the six main emotions. Motion vectors are extracted from the sequence using optical flow algorithm. These vectors are then used to train the conditional random field and finally to automatically determine the emotion. In this paper, in addition to the basic conditional random field, the hidden dynamic conditional random field is also investigated. Additionally, the effect of changing some parameters of these algorithms such as different optimization methods has been investigated. Given that a facial expression is recognized during a sequence of images, random field-based methods can be used for efficient classification of facial expressions reaching accuracy (more than 90%) competitive with the best existing methods for facial expression recognition.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"91 1","pages":"000271-000278"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic facial expression recognition in an image sequence using conditional random field\",\"authors\":\"M. Roshanzamir, Mahdi Roshanzamir, Abdolreza Mirzaei, M. Darbandy, A. Shoeibi, R. Alizadehsani, F. Khozeimeh, A. Khosravi\",\"doi\":\"10.1109/CINTI-MACRo57952.2022.10029507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition is one of the fields that nowadays has attracted the attention of many researchers. It is possible to automate facial expression recognition using artificial intelligence methods. This will be of great help to researchers, especially in areas such as psychology. Automatic facial recognition can be derived from a static image of facial expression, but a better and more efficient way to do this is through a sequence of images. In this paper, a new method is proposed to automatically detect facial expressions from a sequence of images. Each sequence of facial images begins with a face neutral state and ends with one of the six main emotions. Motion vectors are extracted from the sequence using optical flow algorithm. These vectors are then used to train the conditional random field and finally to automatically determine the emotion. In this paper, in addition to the basic conditional random field, the hidden dynamic conditional random field is also investigated. Additionally, the effect of changing some parameters of these algorithms such as different optimization methods has been investigated. Given that a facial expression is recognized during a sequence of images, random field-based methods can be used for efficient classification of facial expressions reaching accuracy (more than 90%) competitive with the best existing methods for facial expression recognition.\",\"PeriodicalId\":18535,\"journal\":{\"name\":\"Micro\",\"volume\":\"91 1\",\"pages\":\"000271-000278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic facial expression recognition in an image sequence using conditional random field
Facial expression recognition is one of the fields that nowadays has attracted the attention of many researchers. It is possible to automate facial expression recognition using artificial intelligence methods. This will be of great help to researchers, especially in areas such as psychology. Automatic facial recognition can be derived from a static image of facial expression, but a better and more efficient way to do this is through a sequence of images. In this paper, a new method is proposed to automatically detect facial expressions from a sequence of images. Each sequence of facial images begins with a face neutral state and ends with one of the six main emotions. Motion vectors are extracted from the sequence using optical flow algorithm. These vectors are then used to train the conditional random field and finally to automatically determine the emotion. In this paper, in addition to the basic conditional random field, the hidden dynamic conditional random field is also investigated. Additionally, the effect of changing some parameters of these algorithms such as different optimization methods has been investigated. Given that a facial expression is recognized during a sequence of images, random field-based methods can be used for efficient classification of facial expressions reaching accuracy (more than 90%) competitive with the best existing methods for facial expression recognition.