线性增长图的树宽有界

IF 0.7 4区 数学 Q2 MATHEMATICS
Rutger Campbell, Marc Distel, J. P. Gollin, Daniel J. Harvey, Kevin Hendrey, Robert Hickingbotham, B. Mohar, D. Wood
{"title":"线性增长图的树宽有界","authors":"Rutger Campbell, Marc Distel, J. P. Gollin, Daniel J. Harvey, Kevin Hendrey, Robert Hickingbotham, B. Mohar, D. Wood","doi":"10.37236/11657","DOIUrl":null,"url":null,"abstract":"A graph class $\\mathcal{G}$ has linear growth if, for each graph $G \\in \\mathcal{G}$ and every positive integer $r$, every subgraph of $G$ with radius at most $r$ contains $O(r)$ vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"18 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graphs of Linear Growth have Bounded Treewidth\",\"authors\":\"Rutger Campbell, Marc Distel, J. P. Gollin, Daniel J. Harvey, Kevin Hendrey, Robert Hickingbotham, B. Mohar, D. Wood\",\"doi\":\"10.37236/11657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph class $\\\\mathcal{G}$ has linear growth if, for each graph $G \\\\in \\\\mathcal{G}$ and every positive integer $r$, every subgraph of $G$ with radius at most $r$ contains $O(r)$ vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11657\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11657","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

一个图类$\mathcal{G}$具有线性增长,如果对于每一个图$G \in $ mathcal{G}$和每一个正整数$r$, $G$的每一个半径不超过$r$的子图包含$O(r)$顶点。本文证明了每一类具有线性增长的图都有有界树宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphs of Linear Growth have Bounded Treewidth
A graph class $\mathcal{G}$ has linear growth if, for each graph $G \in \mathcal{G}$ and every positive integer $r$, every subgraph of $G$ with radius at most $r$ contains $O(r)$ vertices. In this paper, we show that every graph class with linear growth has bounded treewidth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信