粘弹性von Kármán膜壳的渐近建模

M. Legougui, A. Ghezal
{"title":"粘弹性von Kármán膜壳的渐近建模","authors":"M. Legougui, A. Ghezal","doi":"10.1515/anly-2022-1106","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this work is to study the asymptotic justification of the two-dimensional model of viscoelastic von Kármán membrane shells. More precisely, we consider a three-dimensional model for a nonlinearly viscoelastic membrane shell with a specific class of boundary conditions of von Kármán type. Using techniques from formal asymptotic analysis with the thickness of the shell as a small parameter, we show that the scaled three-dimensional solution still leads to the two-dimensional model of viscoelastic von Kármán membrane shells.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic modelling of viscoelastic von Kármán membrane shells\",\"authors\":\"M. Legougui, A. Ghezal\",\"doi\":\"10.1515/anly-2022-1106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The objective of this work is to study the asymptotic justification of the two-dimensional model of viscoelastic von Kármán membrane shells. More precisely, we consider a three-dimensional model for a nonlinearly viscoelastic membrane shell with a specific class of boundary conditions of von Kármán type. Using techniques from formal asymptotic analysis with the thickness of the shell as a small parameter, we show that the scaled three-dimensional solution still leads to the two-dimensional model of viscoelastic von Kármán membrane shells.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2022-1106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是研究粘弹性von Kármán膜壳二维模型的渐近证明。更准确地说,我们考虑了具有特定类型的von Kármán型边界条件的非线性粘弹性膜壳的三维模型。利用形式渐近分析技术,以壳的厚度作为一个小参数,我们证明了缩放的三维解仍然导致粘弹性von Kármán膜壳的二维模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic modelling of viscoelastic von Kármán membrane shells
Abstract The objective of this work is to study the asymptotic justification of the two-dimensional model of viscoelastic von Kármán membrane shells. More precisely, we consider a three-dimensional model for a nonlinearly viscoelastic membrane shell with a specific class of boundary conditions of von Kármán type. Using techniques from formal asymptotic analysis with the thickness of the shell as a small parameter, we show that the scaled three-dimensional solution still leads to the two-dimensional model of viscoelastic von Kármán membrane shells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信