脉冲激光沉积制备氮化镓/氮化铝纳米薄膜的场发射特性

Wei Zhao, Ruzhi Wang, FengYing Wang, Siying Chen, Bo Wang, Hao Wang, Hui Yan
{"title":"脉冲激光沉积制备氮化镓/氮化铝纳米薄膜的场发射特性","authors":"Wei Zhao, Ruzhi Wang, FengYing Wang, Siying Chen, Bo Wang, Hao Wang, Hui Yan","doi":"10.1109/INEC.2010.5424581","DOIUrl":null,"url":null,"abstract":"GaN/AlN two-layer films with different thickness are synthesized on Si substrates by pulsed laser deposition (PLD). GaN and AlN single-layer films are also synthesized for comparison. It is found that the turn-on field of the GaN/AlN two-layer films are considerably decreased 2 orders of magnitude than that of single-layer films. The improvement of FE characteristics an attributed to the quantum structure effects, which supplies a favorable location of electron emission and enhances tunneling ability. We show that by tuning the thickness of GaN/AlN, various FE characteristics can be obtained, which is induced by the modulation of quantum potential well/barrier structure. It indicates that an optimal thickness exists for GaN/AlN two-layer nano-films to give best field emission performance.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"63 1","pages":"716-717"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field emission from GaN/AlN nano-films on Si substrate prepared by pulsed laser deposition\",\"authors\":\"Wei Zhao, Ruzhi Wang, FengYing Wang, Siying Chen, Bo Wang, Hao Wang, Hui Yan\",\"doi\":\"10.1109/INEC.2010.5424581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaN/AlN two-layer films with different thickness are synthesized on Si substrates by pulsed laser deposition (PLD). GaN and AlN single-layer films are also synthesized for comparison. It is found that the turn-on field of the GaN/AlN two-layer films are considerably decreased 2 orders of magnitude than that of single-layer films. The improvement of FE characteristics an attributed to the quantum structure effects, which supplies a favorable location of electron emission and enhances tunneling ability. We show that by tuning the thickness of GaN/AlN, various FE characteristics can be obtained, which is induced by the modulation of quantum potential well/barrier structure. It indicates that an optimal thickness exists for GaN/AlN two-layer nano-films to give best field emission performance.\",\"PeriodicalId\":6390,\"journal\":{\"name\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"volume\":\"63 1\",\"pages\":\"716-717\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INEC.2010.5424581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用脉冲激光沉积(PLD)技术在Si衬底上合成了不同厚度的GaN/AlN两层薄膜。还合成了氮化镓和氮化铝单层膜进行比较。结果表明,GaN/AlN双层膜的导通场比单层膜的导通场减小了2个数量级。量子结构效应为电子发射提供了有利的位置,提高了隧穿能力。我们发现,通过调整GaN/AlN的厚度,可以获得由量子势阱/势垒结构调制引起的各种FE特性。结果表明,氮化镓/氮化铝两层纳米膜存在一个最佳厚度以获得最佳场发射性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field emission from GaN/AlN nano-films on Si substrate prepared by pulsed laser deposition
GaN/AlN two-layer films with different thickness are synthesized on Si substrates by pulsed laser deposition (PLD). GaN and AlN single-layer films are also synthesized for comparison. It is found that the turn-on field of the GaN/AlN two-layer films are considerably decreased 2 orders of magnitude than that of single-layer films. The improvement of FE characteristics an attributed to the quantum structure effects, which supplies a favorable location of electron emission and enhances tunneling ability. We show that by tuning the thickness of GaN/AlN, various FE characteristics can be obtained, which is induced by the modulation of quantum potential well/barrier structure. It indicates that an optimal thickness exists for GaN/AlN two-layer nano-films to give best field emission performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信