紧化Ricci孤子上改进的振荡估计和Hitchin-Thorpe不等式

IF 0.5 4区 数学 Q3 MATHEMATICS
H. Tadano
{"title":"紧化Ricci孤子上改进的振荡估计和Hitchin-Thorpe不等式","authors":"H. Tadano","doi":"10.1063/5.0152174","DOIUrl":null,"url":null,"abstract":"Stimulated by improved oscillation estimates of the potential function and the scalar curvature on compact gradient Ricci solitons introduced in a recent study by Cheng, Ribeiro, and Zhou [Proc. Am. Math. Soc. Ser. B 10, 33–45 (2023)], we give several new sufficient conditions for compact four-dimensional normalized shrinking Ricci solitons to satisfy the Hitchin–Thorpe inequality. Our new conditions refine the validity of the Hitchin–Thorpe inequality obtained by Tadano [J. Math. Phys. 58, 023503 (2017)], Tadano [J. Math. Phys. 59, 043507 (2018)], and Tadano [Differ. Geom. Appl. 66, 231–241 (2019)].","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved oscillation estimates and the Hitchin–Thorpe inequality on compact Ricci solitons\",\"authors\":\"H. Tadano\",\"doi\":\"10.1063/5.0152174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stimulated by improved oscillation estimates of the potential function and the scalar curvature on compact gradient Ricci solitons introduced in a recent study by Cheng, Ribeiro, and Zhou [Proc. Am. Math. Soc. Ser. B 10, 33–45 (2023)], we give several new sufficient conditions for compact four-dimensional normalized shrinking Ricci solitons to satisfy the Hitchin–Thorpe inequality. Our new conditions refine the validity of the Hitchin–Thorpe inequality obtained by Tadano [J. Math. Phys. 58, 023503 (2017)], Tadano [J. Math. Phys. 59, 043507 (2018)], and Tadano [Differ. Geom. Appl. 66, 231–241 (2019)].\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0152174\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0152174","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

由Cheng, Ribeiro和Zhou最近的一项研究中引入的紧凑梯度Ricci孤子上的势函数和标量曲率的改进振荡估计的刺激[Proc. Am]。数学。Soc。爵士。[B],我们给出了紧化四维归一化收缩Ricci孤子满足Hitchin-Thorpe不等式的几个新的充分条件。我们的新条件改进了Tadano得到的Hitchin-Thorpe不等式的有效性[J]。数学。[J] .中国生物医学工程学报,2016,33(5):481 - 481。数学。[j] .中国生物医学工程学报,2016,33(5):487 - 487。几何学。中国生物医学工程学报,2016,36(2):481 - 481。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved oscillation estimates and the Hitchin–Thorpe inequality on compact Ricci solitons
Stimulated by improved oscillation estimates of the potential function and the scalar curvature on compact gradient Ricci solitons introduced in a recent study by Cheng, Ribeiro, and Zhou [Proc. Am. Math. Soc. Ser. B 10, 33–45 (2023)], we give several new sufficient conditions for compact four-dimensional normalized shrinking Ricci solitons to satisfy the Hitchin–Thorpe inequality. Our new conditions refine the validity of the Hitchin–Thorpe inequality obtained by Tadano [J. Math. Phys. 58, 023503 (2017)], Tadano [J. Math. Phys. 59, 043507 (2018)], and Tadano [Differ. Geom. Appl. 66, 231–241 (2019)].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信