基于混合分割的热线丝锥钳红外图像故障预警方法

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Peifeng Shen, Yang Yang, Lihua Li, Tingzhi Chen, Ning Yang
{"title":"基于混合分割的热线丝锥钳红外图像故障预警方法","authors":"Peifeng Shen, Yang Yang, Lihua Li, Tingzhi Chen, Ning Yang","doi":"10.20965/jaciii.2023.p0458","DOIUrl":null,"url":null,"abstract":"Substation equipment faults are typically related to the heating of equipment components. The hotline tap clamps of substation are critical components for carrying load currents and thermal fault potential. As a result, a new hybrid early warning approach for hotline tap clamp faults in substation equipment is presented. A two-dimensional Otsu algorithm is used to coarse-segment infrared images to minimize the subsequent complexity. Since the Chan–Vese (CV) model is insufficiently accurate for image segmentation with uneven grayscale, then the differential data obtained by the Prewitt operator to identify the goal edges are combined with the CV model to improve segmentation accuracy. The improved CV model achieves excellent segmentation of the hotline tap clamp in the substation. The temperature statistics are utilized for the segmented images, and the hotline tap clamp fault warning is realized based totally on the relative temperature difference. Finally, the experiments exhibit that the method can enhance the segmentation impact of infrared images and obtain the goal of fault warning.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"145 1","pages":"458-466"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fault Warning Method for Hotline Tap Clamp Infrared Images Based on Hybrid Segmentation\",\"authors\":\"Peifeng Shen, Yang Yang, Lihua Li, Tingzhi Chen, Ning Yang\",\"doi\":\"10.20965/jaciii.2023.p0458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Substation equipment faults are typically related to the heating of equipment components. The hotline tap clamps of substation are critical components for carrying load currents and thermal fault potential. As a result, a new hybrid early warning approach for hotline tap clamp faults in substation equipment is presented. A two-dimensional Otsu algorithm is used to coarse-segment infrared images to minimize the subsequent complexity. Since the Chan–Vese (CV) model is insufficiently accurate for image segmentation with uneven grayscale, then the differential data obtained by the Prewitt operator to identify the goal edges are combined with the CV model to improve segmentation accuracy. The improved CV model achieves excellent segmentation of the hotline tap clamp in the substation. The temperature statistics are utilized for the segmented images, and the hotline tap clamp fault warning is realized based totally on the relative temperature difference. Finally, the experiments exhibit that the method can enhance the segmentation impact of infrared images and obtain the goal of fault warning.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"145 1\",\"pages\":\"458-466\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

变电站设备故障通常与设备部件发热有关。变电站热线分接钳是承载负荷电流和热故障电位的关键部件。为此,提出了一种新的变电站设备热线分接钳故障混合预警方法。采用二维Otsu算法对红外图像进行粗段分割,使后续处理的复杂度最小化。由于Chan-Vese (CV)模型对于灰度不均匀的图像分割精度不足,将Prewitt算子识别目标边缘得到的差分数据与CV模型相结合,提高分割精度。改进的CV模型实现了变电站热线分接钳的优良分割。对分割后的图像进行温度统计,完全基于相对温差实现热线丝锥故障预警。实验结果表明,该方法可以增强红外图像的分割效果,达到故障预警的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fault Warning Method for Hotline Tap Clamp Infrared Images Based on Hybrid Segmentation
Substation equipment faults are typically related to the heating of equipment components. The hotline tap clamps of substation are critical components for carrying load currents and thermal fault potential. As a result, a new hybrid early warning approach for hotline tap clamp faults in substation equipment is presented. A two-dimensional Otsu algorithm is used to coarse-segment infrared images to minimize the subsequent complexity. Since the Chan–Vese (CV) model is insufficiently accurate for image segmentation with uneven grayscale, then the differential data obtained by the Prewitt operator to identify the goal edges are combined with the CV model to improve segmentation accuracy. The improved CV model achieves excellent segmentation of the hotline tap clamp in the substation. The temperature statistics are utilized for the segmented images, and the hotline tap clamp fault warning is realized based totally on the relative temperature difference. Finally, the experiments exhibit that the method can enhance the segmentation impact of infrared images and obtain the goal of fault warning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信