Denislav Markov, Emil Grigorov, B. Kirov, J. Denev, V. Galabov, M. Marinov
{"title":"用于微流体成像的低成本三维印刷倒置即插即用光学仪器","authors":"Denislav Markov, Emil Grigorov, B. Kirov, J. Denev, V. Galabov, M. Marinov","doi":"10.3390/micro3020036","DOIUrl":null,"url":null,"abstract":"Microfluidics, also known as lab-on-a-chip or micro total analysis systems, can precisely regulate and manipulate micro-sized fluids. They have great potential in biology, chemistry, and medicine, as well as other fields of science. By definition, microfluidic devices operate with small-volume samples and small reactant quantities, which renders them both efficient and affordable. However, such small objects have very demanding requirements for the utilized optical detection system. Due to the specifics of those devices, monitoring the results of experiments is carried out with commercial inverted optical microscopes. Unfortunately, that type of optical device is still expensive. In this article, we present a truly functional, inexpensive, standalone, three-dimensionally printed, and inverted microscope, including the design, engineering, and manufacturing process and some of the experiments that have been conducted with it. Finally, we summarize the advantages of this three-dimensionally printed microscope (including the total fabrication costs) and the future improvements that will be introduced to it.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Cost Three-Dimensionally -Printed Inverted Plug and Play Optical Instrument for Microfluidic Imaging\",\"authors\":\"Denislav Markov, Emil Grigorov, B. Kirov, J. Denev, V. Galabov, M. Marinov\",\"doi\":\"10.3390/micro3020036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidics, also known as lab-on-a-chip or micro total analysis systems, can precisely regulate and manipulate micro-sized fluids. They have great potential in biology, chemistry, and medicine, as well as other fields of science. By definition, microfluidic devices operate with small-volume samples and small reactant quantities, which renders them both efficient and affordable. However, such small objects have very demanding requirements for the utilized optical detection system. Due to the specifics of those devices, monitoring the results of experiments is carried out with commercial inverted optical microscopes. Unfortunately, that type of optical device is still expensive. In this article, we present a truly functional, inexpensive, standalone, three-dimensionally printed, and inverted microscope, including the design, engineering, and manufacturing process and some of the experiments that have been conducted with it. Finally, we summarize the advantages of this three-dimensionally printed microscope (including the total fabrication costs) and the future improvements that will be introduced to it.\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/micro3020036\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3020036","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-Cost Three-Dimensionally -Printed Inverted Plug and Play Optical Instrument for Microfluidic Imaging
Microfluidics, also known as lab-on-a-chip or micro total analysis systems, can precisely regulate and manipulate micro-sized fluids. They have great potential in biology, chemistry, and medicine, as well as other fields of science. By definition, microfluidic devices operate with small-volume samples and small reactant quantities, which renders them both efficient and affordable. However, such small objects have very demanding requirements for the utilized optical detection system. Due to the specifics of those devices, monitoring the results of experiments is carried out with commercial inverted optical microscopes. Unfortunately, that type of optical device is still expensive. In this article, we present a truly functional, inexpensive, standalone, three-dimensionally printed, and inverted microscope, including the design, engineering, and manufacturing process and some of the experiments that have been conducted with it. Finally, we summarize the advantages of this three-dimensionally printed microscope (including the total fabrication costs) and the future improvements that will be introduced to it.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics