{"title":"基于自适应多尺度离散连续变分方法的快速密集三维重建","authors":"Z. Kang, G. Medioni","doi":"10.1109/WACV.2014.6836118","DOIUrl":null,"url":null,"abstract":"We present a system for fast dense 3D reconstruction with a hand-held camera. Walking around a target object, we shoot sequential images using continuous shooting mode. High-quality camera poses are obtained offline using structure-from-motion (SfM) algorithm with Bundle Adjustment. Multi-view stereo is solved using a new, efficient adaptive multiscale discrete-continuous variational method to generate depth maps with sub-pixel accuracy. Depth maps are then fused into a 3D model using volumetric integration with truncated signed distance function (TSDF). Our system is accurate, efficient and flexible: accurate depth maps are estimated with sub-pixel accuracy in stereo matching; dense models can be achieved within minutes as major algorithms parallelized on multi-core processor and GPU; various tasks can be handled (e.g. reconstruction of objects in both indoor and outdoor environment with different scales) without specific hand-tuning parameters. We evaluate our system quantitatively and qualitatively on Middlebury benchmark and another dataset collected with a smartphone camera.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"5 9 1","pages":"53-60"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast dense 3D reconstruction using an adaptive multiscale discrete-continuous variational method\",\"authors\":\"Z. Kang, G. Medioni\",\"doi\":\"10.1109/WACV.2014.6836118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a system for fast dense 3D reconstruction with a hand-held camera. Walking around a target object, we shoot sequential images using continuous shooting mode. High-quality camera poses are obtained offline using structure-from-motion (SfM) algorithm with Bundle Adjustment. Multi-view stereo is solved using a new, efficient adaptive multiscale discrete-continuous variational method to generate depth maps with sub-pixel accuracy. Depth maps are then fused into a 3D model using volumetric integration with truncated signed distance function (TSDF). Our system is accurate, efficient and flexible: accurate depth maps are estimated with sub-pixel accuracy in stereo matching; dense models can be achieved within minutes as major algorithms parallelized on multi-core processor and GPU; various tasks can be handled (e.g. reconstruction of objects in both indoor and outdoor environment with different scales) without specific hand-tuning parameters. We evaluate our system quantitatively and qualitatively on Middlebury benchmark and another dataset collected with a smartphone camera.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"5 9 1\",\"pages\":\"53-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast dense 3D reconstruction using an adaptive multiscale discrete-continuous variational method
We present a system for fast dense 3D reconstruction with a hand-held camera. Walking around a target object, we shoot sequential images using continuous shooting mode. High-quality camera poses are obtained offline using structure-from-motion (SfM) algorithm with Bundle Adjustment. Multi-view stereo is solved using a new, efficient adaptive multiscale discrete-continuous variational method to generate depth maps with sub-pixel accuracy. Depth maps are then fused into a 3D model using volumetric integration with truncated signed distance function (TSDF). Our system is accurate, efficient and flexible: accurate depth maps are estimated with sub-pixel accuracy in stereo matching; dense models can be achieved within minutes as major algorithms parallelized on multi-core processor and GPU; various tasks can be handled (e.g. reconstruction of objects in both indoor and outdoor environment with different scales) without specific hand-tuning parameters. We evaluate our system quantitatively and qualitatively on Middlebury benchmark and another dataset collected with a smartphone camera.