基于强化学习的差异化业务网络自适应配置

T. Hui, C. Tham
{"title":"基于强化学习的差异化业务网络自适应配置","authors":"T. Hui, C. Tham","doi":"10.1109/TSMCC.2003.818472","DOIUrl":null,"url":null,"abstract":"The issue of bandwidth provisioning for Per Hop Behavior (PHB) aggregates in Differentiated Services (DiffServ) networks has received a lot of attention from researchers. However, most proposed methods need to determine the amount of bandwidth to provision at the time of connection admission. This assumes that traffic in admitted flows always conforms to predefined specifications, which would need some form of traffic shaping or admission control before reaching the ingress of the domain. This paper proposes an adaptive provisioning mechanism based on reinforcement-learning principles, which determines at regular intervals the amount of bandwidth to provision to each PHB aggregate. The mechanism adjusts to maximize the amount of revenue earned from a usage-based pricing model. The novel use of a continuous-space, gradient-based learning algorithm, enables the mechanism to require neither accurate traffic specifications nor rigid admission control. Using ns-2 simulations, we demonstrate using Weighted Fair Queuing, how our mechanism can be implemented in a DiffServ network.","PeriodicalId":55005,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","volume":"60 1","pages":"492-501"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Adaptive provisioning of differentiated services networks based on reinforcement learning\",\"authors\":\"T. Hui, C. Tham\",\"doi\":\"10.1109/TSMCC.2003.818472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issue of bandwidth provisioning for Per Hop Behavior (PHB) aggregates in Differentiated Services (DiffServ) networks has received a lot of attention from researchers. However, most proposed methods need to determine the amount of bandwidth to provision at the time of connection admission. This assumes that traffic in admitted flows always conforms to predefined specifications, which would need some form of traffic shaping or admission control before reaching the ingress of the domain. This paper proposes an adaptive provisioning mechanism based on reinforcement-learning principles, which determines at regular intervals the amount of bandwidth to provision to each PHB aggregate. The mechanism adjusts to maximize the amount of revenue earned from a usage-based pricing model. The novel use of a continuous-space, gradient-based learning algorithm, enables the mechanism to require neither accurate traffic specifications nor rigid admission control. Using ns-2 simulations, we demonstrate using Weighted Fair Queuing, how our mechanism can be implemented in a DiffServ network.\",\"PeriodicalId\":55005,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"volume\":\"60 1\",\"pages\":\"492-501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCC.2003.818472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCC.2003.818472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

差分服务(DiffServ)网络中每跳行为(PHB)聚合的带宽分配问题受到了研究人员的广泛关注。然而,大多数建议的方法需要在连接允许时确定要提供的带宽量。这假定被允许的流中的流量始终符合预定义的规范,在到达域的入口之前需要某种形式的流量整形或允许控制。本文提出了一种基于强化学习原理的自适应供应机制,该机制定期确定向每个PHB聚合提供的带宽量。该机制将调整为从基于使用的定价模型中获得的收益最大化。新使用的连续空间,基于梯度的学习算法,使该机制既不需要精确的交通规范,也不需要严格的准入控制。使用ns-2模拟,我们使用加权公平排队演示了如何在DiffServ网络中实现我们的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive provisioning of differentiated services networks based on reinforcement learning
The issue of bandwidth provisioning for Per Hop Behavior (PHB) aggregates in Differentiated Services (DiffServ) networks has received a lot of attention from researchers. However, most proposed methods need to determine the amount of bandwidth to provision at the time of connection admission. This assumes that traffic in admitted flows always conforms to predefined specifications, which would need some form of traffic shaping or admission control before reaching the ingress of the domain. This paper proposes an adaptive provisioning mechanism based on reinforcement-learning principles, which determines at regular intervals the amount of bandwidth to provision to each PHB aggregate. The mechanism adjusts to maximize the amount of revenue earned from a usage-based pricing model. The novel use of a continuous-space, gradient-based learning algorithm, enables the mechanism to require neither accurate traffic specifications nor rigid admission control. Using ns-2 simulations, we demonstrate using Weighted Fair Queuing, how our mechanism can be implemented in a DiffServ network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信