{"title":"材料不确定性对压电风扇动力分析的影响","authors":"S. Srivastava, S. Yadav, S. Mukherjee","doi":"10.1117/12.2083012","DOIUrl":null,"url":null,"abstract":"A piezofan is a resonant device that uses a piezoceramic material to induce oscillations in a cantilever beam. In this study, lumped-mass modelling is used to analyze a piezoelectric fan. Uncertainties are associated with the piezoelectric structures due to several reasons such as variation during manufacturing process, temperature, presence of adhesive layer between the piezoelectric actuator/sensor and the shim stock etc. Presence of uncertainty in the piezoelectric materials can influence the dynamic behavior of the piezoelectric fan such as natural frequency, tip deflection etc. Moreover, these quantities will also affect the performance parameters of the piezoelectric fan. Uncertainty analysis is performed using classical Monte Carlo Simulation (MCS). It is found that the propagation of uncertainty causes significant deviations from the baseline deterministic predictions, which also affect the achievable performance of the piezofan. The numerical results in this paper provide useful bounds on several performance parameters of the cooling fan and will enhance confidence in the design process.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of material uncertainties on dynamic analysis of piezoelectric fans\",\"authors\":\"S. Srivastava, S. Yadav, S. Mukherjee\",\"doi\":\"10.1117/12.2083012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A piezofan is a resonant device that uses a piezoceramic material to induce oscillations in a cantilever beam. In this study, lumped-mass modelling is used to analyze a piezoelectric fan. Uncertainties are associated with the piezoelectric structures due to several reasons such as variation during manufacturing process, temperature, presence of adhesive layer between the piezoelectric actuator/sensor and the shim stock etc. Presence of uncertainty in the piezoelectric materials can influence the dynamic behavior of the piezoelectric fan such as natural frequency, tip deflection etc. Moreover, these quantities will also affect the performance parameters of the piezoelectric fan. Uncertainty analysis is performed using classical Monte Carlo Simulation (MCS). It is found that the propagation of uncertainty causes significant deviations from the baseline deterministic predictions, which also affect the achievable performance of the piezofan. The numerical results in this paper provide useful bounds on several performance parameters of the cooling fan and will enhance confidence in the design process.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2015-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2083012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2083012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effect of material uncertainties on dynamic analysis of piezoelectric fans
A piezofan is a resonant device that uses a piezoceramic material to induce oscillations in a cantilever beam. In this study, lumped-mass modelling is used to analyze a piezoelectric fan. Uncertainties are associated with the piezoelectric structures due to several reasons such as variation during manufacturing process, temperature, presence of adhesive layer between the piezoelectric actuator/sensor and the shim stock etc. Presence of uncertainty in the piezoelectric materials can influence the dynamic behavior of the piezoelectric fan such as natural frequency, tip deflection etc. Moreover, these quantities will also affect the performance parameters of the piezoelectric fan. Uncertainty analysis is performed using classical Monte Carlo Simulation (MCS). It is found that the propagation of uncertainty causes significant deviations from the baseline deterministic predictions, which also affect the achievable performance of the piezofan. The numerical results in this paper provide useful bounds on several performance parameters of the cooling fan and will enhance confidence in the design process.