在硅衬底外延生长的增强相干全氮超导量子比特

Sunmi Kim, H. Terai, T. Yamashita, W. Qiu, T. Fuse, F. Yoshihara, S. Ashhab, K. Inomata, K. Semba
{"title":"在硅衬底外延生长的增强相干全氮超导量子比特","authors":"Sunmi Kim, H. Terai, T. Yamashita, W. Qiu, T. Fuse, F. Yoshihara, S. Ashhab, K. Inomata, K. Semba","doi":"10.21203/RS.3.RS-343585/V1","DOIUrl":null,"url":null,"abstract":"\n We have developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on Si substrates which promise to overcome the drawbacks of qubits based on Al/AlOx/Al junctions. The all-nitride qubits have great advantages such as chemical stability against oxidation (resulting in fewer two-level fluctuators), feasibility for epitaxial tunnel barriers (further reducing energy relaxation and dephasing), and a larger superconducting gap of ~ 5.2 meV for NbN compared to ~ 0.3 meV for Al (suppressing the excitation of quasiparticles). Replacing conventional MgO by a Si substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we demonstrate a qubit energy relaxation time \\({T}_{1}=16.3 {\\mu }\\text{s}\\) and a spin-echo dephasing time \\({T}_{2}=21.5 {\\mu }\\text{s}\\). These significant improvements in quantum coherence are explained by the reduced dielectric loss compared to previously reported NbN-based qubits with MgO substrates (\\({T}_{1}\\approx {T}_{2}\\approx 0.5 {\\mu }\\text{s}\\)). These results are an important step towards constructing a new platform for superconducting quantum hardware.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Enhanced-coherence all-nitride superconducting qubit epitaxially grown on Si substrate\",\"authors\":\"Sunmi Kim, H. Terai, T. Yamashita, W. Qiu, T. Fuse, F. Yoshihara, S. Ashhab, K. Inomata, K. Semba\",\"doi\":\"10.21203/RS.3.RS-343585/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We have developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on Si substrates which promise to overcome the drawbacks of qubits based on Al/AlOx/Al junctions. The all-nitride qubits have great advantages such as chemical stability against oxidation (resulting in fewer two-level fluctuators), feasibility for epitaxial tunnel barriers (further reducing energy relaxation and dephasing), and a larger superconducting gap of ~ 5.2 meV for NbN compared to ~ 0.3 meV for Al (suppressing the excitation of quasiparticles). Replacing conventional MgO by a Si substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we demonstrate a qubit energy relaxation time \\\\({T}_{1}=16.3 {\\\\mu }\\\\text{s}\\\\) and a spin-echo dephasing time \\\\({T}_{2}=21.5 {\\\\mu }\\\\text{s}\\\\). These significant improvements in quantum coherence are explained by the reduced dielectric loss compared to previously reported NbN-based qubits with MgO substrates (\\\\({T}_{1}\\\\approx {T}_{2}\\\\approx 0.5 {\\\\mu }\\\\text{s}\\\\)). These results are an important step towards constructing a new platform for superconducting quantum hardware.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-343585/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-343585/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们在Si衬底上开发了基于NbN/AlN/NbN外延约瑟夫森结的超导量子比特,有望克服基于Al/AlOx/Al结的量子比特的缺点。全氮量子比特具有很大的优势,例如抗氧化的化学稳定性(导致更少的双能级波动),外延隧道势垒的可行性(进一步减少能量弛豫和去相),NbN的超导间隙比Al的大5.2 meV(抑制准粒子的激发)。在氮化结的外延生长中,用TiN缓冲层取代传统的MgO衬底,我们证明了量子比特的能量松弛时间\({T}_{1}=16.3 {\mu }\text{s}\)和自旋回波消相时间\({T}_{2}=21.5 {\mu }\text{s}\)。量子相干性的这些显著改进可以解释为与先前报道的具有MgO衬底的基于nbn的量子位相比,介电损耗降低(\({T}_{1}\approx {T}_{2}\approx 0.5 {\mu }\text{s}\))。这些结果是构建超导量子硬件新平台的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced-coherence all-nitride superconducting qubit epitaxially grown on Si substrate
We have developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on Si substrates which promise to overcome the drawbacks of qubits based on Al/AlOx/Al junctions. The all-nitride qubits have great advantages such as chemical stability against oxidation (resulting in fewer two-level fluctuators), feasibility for epitaxial tunnel barriers (further reducing energy relaxation and dephasing), and a larger superconducting gap of ~ 5.2 meV for NbN compared to ~ 0.3 meV for Al (suppressing the excitation of quasiparticles). Replacing conventional MgO by a Si substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we demonstrate a qubit energy relaxation time \({T}_{1}=16.3 {\mu }\text{s}\) and a spin-echo dephasing time \({T}_{2}=21.5 {\mu }\text{s}\). These significant improvements in quantum coherence are explained by the reduced dielectric loss compared to previously reported NbN-based qubits with MgO substrates (\({T}_{1}\approx {T}_{2}\approx 0.5 {\mu }\text{s}\)). These results are an important step towards constructing a new platform for superconducting quantum hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信