纳滤中精确高效参数估计的全局优化

IF 4.9 Q1 ENGINEERING, CHEMICAL
Danyal Rehman , John H. Lienhard
{"title":"纳滤中精确高效参数估计的全局优化","authors":"Danyal Rehman ,&nbsp;John H. Lienhard","doi":"10.1016/j.memlet.2022.100034","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most well-established frameworks for modeling multicomponent transport in nanofiltration (NF) is the Donnan-Steric Pore Model with Dielectric Exclusion (DSPM-DE). Conventional DSPM-DE characterizes transport across NF membranes through four governing membrane parameters: (1) pore radius; (2) effective membrane thickness; (3) membrane charge density; and (4) the dielectric constant inside the membrane pores. The process for quantifying these parameters is typically sequential. First, neutral solute experiments are performed to determine pore radius and effective membrane thickness. Next, charged species experiments are conducted, and the data is used to regress out the remaining parameters. The resulting regressions are often performed using local search algorithms that can struggle to provide low residuals with robust fits. In addition, this two-step approach tends to: (1) require a substantial number of charged and uncharged solute experiments; and (2) introduce assumed relationships between pore size and water flux, such as the Hagen-Poiseuille equation, which may not be representative of transport through complex pore networks. To address these issues, we propose the use of metaheuristic global optimization techniques supplemented with gradient-free local search and maximum likelihood estimation to simultaneously regress all four membrane parameters directly from charged species experiments. We validate our approach against eight independent datasets across diverse input salinities, compositions, and membranes.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000216/pdfft?md5=8d532a150f743dec6b583aca0be0ab3c&pid=1-s2.0-S2772421222000216-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Global optimization for accurate and efficient parameter estimation in nanofiltration\",\"authors\":\"Danyal Rehman ,&nbsp;John H. Lienhard\",\"doi\":\"10.1016/j.memlet.2022.100034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the most well-established frameworks for modeling multicomponent transport in nanofiltration (NF) is the Donnan-Steric Pore Model with Dielectric Exclusion (DSPM-DE). Conventional DSPM-DE characterizes transport across NF membranes through four governing membrane parameters: (1) pore radius; (2) effective membrane thickness; (3) membrane charge density; and (4) the dielectric constant inside the membrane pores. The process for quantifying these parameters is typically sequential. First, neutral solute experiments are performed to determine pore radius and effective membrane thickness. Next, charged species experiments are conducted, and the data is used to regress out the remaining parameters. The resulting regressions are often performed using local search algorithms that can struggle to provide low residuals with robust fits. In addition, this two-step approach tends to: (1) require a substantial number of charged and uncharged solute experiments; and (2) introduce assumed relationships between pore size and water flux, such as the Hagen-Poiseuille equation, which may not be representative of transport through complex pore networks. To address these issues, we propose the use of metaheuristic global optimization techniques supplemented with gradient-free local search and maximum likelihood estimation to simultaneously regress all four membrane parameters directly from charged species experiments. We validate our approach against eight independent datasets across diverse input salinities, compositions, and membranes.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772421222000216/pdfft?md5=8d532a150f743dec6b583aca0be0ab3c&pid=1-s2.0-S2772421222000216-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421222000216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421222000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 5

摘要

模拟纳滤(NF)中多组分输运的最完善的框架之一是具有介电排斥的Donnan-Steric孔模型(DSPM-DE)。传统的DSPM-DE通过四个控制膜参数来表征NF膜上的转运:(1)孔半径;(2)有效膜厚;(3)膜电荷密度;(4)膜孔内介电常数。量化这些参数的过程通常是顺序的。首先,进行中性溶质实验来确定孔隙半径和有效膜厚度。接下来,进行带电物质实验,并利用数据回归出剩余参数。所得到的回归通常使用局部搜索算法来执行,这些算法很难提供具有鲁棒拟合的低残差。此外,这种两步法往往:(1)需要大量的带电和不带电溶质实验;(2)引入孔隙大小与水通量之间的假设关系,如Hagen-Poiseuille方程,该方程可能不能代表通过复杂孔隙网络的输运。为了解决这些问题,我们建议使用元启发式全局优化技术,辅以无梯度局部搜索和最大似然估计,同时直接从带电物质实验中回归所有四个膜参数。我们针对不同输入盐度、成分和膜的8个独立数据集验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global optimization for accurate and efficient parameter estimation in nanofiltration

Global optimization for accurate and efficient parameter estimation in nanofiltration

One of the most well-established frameworks for modeling multicomponent transport in nanofiltration (NF) is the Donnan-Steric Pore Model with Dielectric Exclusion (DSPM-DE). Conventional DSPM-DE characterizes transport across NF membranes through four governing membrane parameters: (1) pore radius; (2) effective membrane thickness; (3) membrane charge density; and (4) the dielectric constant inside the membrane pores. The process for quantifying these parameters is typically sequential. First, neutral solute experiments are performed to determine pore radius and effective membrane thickness. Next, charged species experiments are conducted, and the data is used to regress out the remaining parameters. The resulting regressions are often performed using local search algorithms that can struggle to provide low residuals with robust fits. In addition, this two-step approach tends to: (1) require a substantial number of charged and uncharged solute experiments; and (2) introduce assumed relationships between pore size and water flux, such as the Hagen-Poiseuille equation, which may not be representative of transport through complex pore networks. To address these issues, we propose the use of metaheuristic global optimization techniques supplemented with gradient-free local search and maximum likelihood estimation to simultaneously regress all four membrane parameters directly from charged species experiments. We validate our approach against eight independent datasets across diverse input salinities, compositions, and membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信