S. Sharma, U. Bhatt, J. Sharma, H. Kalaji, J. Mojski, V. Soni
{"title":"植物光合机构在涝渍条件下的超微结构、适应性及缓解机制研究进展","authors":"S. Sharma, U. Bhatt, J. Sharma, H. Kalaji, J. Mojski, V. Soni","doi":"10.32615/ps.2022.033","DOIUrl":null,"url":null,"abstract":"malondialdehyde; salicylic WL waterlogging. Conflict of interest : The authors declare that they have no conflict of interest. Under waterlogging, the photosynthetic apparatus of plants was destroyed. Waterlogging reduced chlorophyll content and the net photosynthetic rate. Therefore, this updated review summarized the effect of waterlogging on chloroplast ultrastructure, photosynthetic characteristics, and chlorophyll fluorescence attributes of plant species. By studying various research papers, we found that intercellular concentration of available carbon dioxide in mesophyll cells, assimilation of carbon, and the net photosynthetic ratio declined under waterlogging. The chlorophyll fluorescence efficiency of plants decreased under waterlogging. Thus, the study of photosynthesis in plants under waterlogging should be done with respect to changing climate. Moreover, the recognition of photosynthetic characteristics present in tolerant species will be beneficial for designing the waterlogging-tolerant crop plant in changing environments.","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"80 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultrastructure, adaptability, and alleviation mechanisms of photosynthetic apparatus in plants under waterlogging: A review\",\"authors\":\"S. Sharma, U. Bhatt, J. Sharma, H. Kalaji, J. Mojski, V. Soni\",\"doi\":\"10.32615/ps.2022.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"malondialdehyde; salicylic WL waterlogging. Conflict of interest : The authors declare that they have no conflict of interest. Under waterlogging, the photosynthetic apparatus of plants was destroyed. Waterlogging reduced chlorophyll content and the net photosynthetic rate. Therefore, this updated review summarized the effect of waterlogging on chloroplast ultrastructure, photosynthetic characteristics, and chlorophyll fluorescence attributes of plant species. By studying various research papers, we found that intercellular concentration of available carbon dioxide in mesophyll cells, assimilation of carbon, and the net photosynthetic ratio declined under waterlogging. The chlorophyll fluorescence efficiency of plants decreased under waterlogging. Thus, the study of photosynthesis in plants under waterlogging should be done with respect to changing climate. Moreover, the recognition of photosynthetic characteristics present in tolerant species will be beneficial for designing the waterlogging-tolerant crop plant in changing environments.\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2022.033\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2022.033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Ultrastructure, adaptability, and alleviation mechanisms of photosynthetic apparatus in plants under waterlogging: A review
malondialdehyde; salicylic WL waterlogging. Conflict of interest : The authors declare that they have no conflict of interest. Under waterlogging, the photosynthetic apparatus of plants was destroyed. Waterlogging reduced chlorophyll content and the net photosynthetic rate. Therefore, this updated review summarized the effect of waterlogging on chloroplast ultrastructure, photosynthetic characteristics, and chlorophyll fluorescence attributes of plant species. By studying various research papers, we found that intercellular concentration of available carbon dioxide in mesophyll cells, assimilation of carbon, and the net photosynthetic ratio declined under waterlogging. The chlorophyll fluorescence efficiency of plants decreased under waterlogging. Thus, the study of photosynthesis in plants under waterlogging should be done with respect to changing climate. Moreover, the recognition of photosynthetic characteristics present in tolerant species will be beneficial for designing the waterlogging-tolerant crop plant in changing environments.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.