深度完成与深度几何和上下文指导

Byeong-uk Lee, Hae-Gon Jeon, Sunghoon Im, I. Kweon
{"title":"深度完成与深度几何和上下文指导","authors":"Byeong-uk Lee, Hae-Gon Jeon, Sunghoon Im, I. Kweon","doi":"10.1109/ICRA.2019.8794161","DOIUrl":null,"url":null,"abstract":"In this paper, we present an end-to-end convolutional neural network (CNN) for depth completion. Our network consists of a geometry network and a context network. The geometry network, a single encoder-decoder network, learns to optimize a multi-task loss to generate an initial propagated depth map and a surface normal. The complementary outputs allow it to correctly propagate initial sparse depth points in slanted surfaces. The context network extracts a local and a global feature of an image to compute a bilateral weight, which enables it to preserve edges and fine details in the depth maps. At the end, a final output is produced by multiplying the initially propagated depth map with the bilateral weight. In order to validate the effectiveness and the robustness of our network, we performed extensive ablation studies and compared the results against state-of-the-art CNN-based depth completions, where we showed promising results on various scenes.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"8 1","pages":"3281-3287"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Depth Completion with Deep Geometry and Context Guidance\",\"authors\":\"Byeong-uk Lee, Hae-Gon Jeon, Sunghoon Im, I. Kweon\",\"doi\":\"10.1109/ICRA.2019.8794161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an end-to-end convolutional neural network (CNN) for depth completion. Our network consists of a geometry network and a context network. The geometry network, a single encoder-decoder network, learns to optimize a multi-task loss to generate an initial propagated depth map and a surface normal. The complementary outputs allow it to correctly propagate initial sparse depth points in slanted surfaces. The context network extracts a local and a global feature of an image to compute a bilateral weight, which enables it to preserve edges and fine details in the depth maps. At the end, a final output is produced by multiplying the initially propagated depth map with the bilateral weight. In order to validate the effectiveness and the robustness of our network, we performed extensive ablation studies and compared the results against state-of-the-art CNN-based depth completions, where we showed promising results on various scenes.\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"8 1\",\"pages\":\"3281-3287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8794161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种用于深度补全的端到端卷积神经网络(CNN)。我们的网络由一个几何网络和一个上下文网络组成。几何网络,一个单一的编码器-解码器网络,学习优化一个多任务损失来生成一个初始传播深度图和一个表面法线。互补输出允许它在斜面上正确传播初始稀疏深度点。上下文网络提取图像的局部和全局特征来计算双边权重,从而使其能够保留深度图中的边缘和精细细节。最后,通过将最初传播的深度图与双边权重相乘来产生最终输出。为了验证我们网络的有效性和鲁棒性,我们进行了广泛的消融研究,并将结果与最先进的基于cnn的深度完井进行了比较,在不同的场景下,我们显示出了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth Completion with Deep Geometry and Context Guidance
In this paper, we present an end-to-end convolutional neural network (CNN) for depth completion. Our network consists of a geometry network and a context network. The geometry network, a single encoder-decoder network, learns to optimize a multi-task loss to generate an initial propagated depth map and a surface normal. The complementary outputs allow it to correctly propagate initial sparse depth points in slanted surfaces. The context network extracts a local and a global feature of an image to compute a bilateral weight, which enables it to preserve edges and fine details in the depth maps. At the end, a final output is produced by multiplying the initially propagated depth map with the bilateral weight. In order to validate the effectiveness and the robustness of our network, we performed extensive ablation studies and compared the results against state-of-the-art CNN-based depth completions, where we showed promising results on various scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信