时空Brusselator模型与生物模式形成

Zakir Hossine, Oishi Khanam, Md Mashih Ibn Yasin Adan, M. Kamrujjaman
{"title":"时空Brusselator模型与生物模式形成","authors":"Zakir Hossine, Oishi Khanam, Md Mashih Ibn Yasin Adan, M. Kamrujjaman","doi":"10.9734/ARRB/2021/V36I530380","DOIUrl":null,"url":null,"abstract":"This paper explores a two-species non-homogeneous reaction-diffusion model for the study of pattern formation with the Brusselator model. We scrutinize the pattern formation with initial conditions and Neumann boundary conditions in a spatially heterogeneous environment. In the whole investigation, we assume the case for random diffusion strategy. The dynamics of model behaviors show that the nature of pattern formation with varying parameters and initial conditions thoroughly. The model also studies in the absence of diffusion terms. The theoretical and numerical observations explain pattern formation using the reaction-diffusion model in both one and two dimensions. *Corresponding author: E-mail: kamrujjaman@du.ac.bd; Hossine et al.; ARRB, 36(5): 88-99, 2021; Article no.ARRB.69331","PeriodicalId":8230,"journal":{"name":"Annual research & review in biology","volume":"7 1","pages":"88-99"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal Brusselator Model and Biological Pattern Formation\",\"authors\":\"Zakir Hossine, Oishi Khanam, Md Mashih Ibn Yasin Adan, M. Kamrujjaman\",\"doi\":\"10.9734/ARRB/2021/V36I530380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a two-species non-homogeneous reaction-diffusion model for the study of pattern formation with the Brusselator model. We scrutinize the pattern formation with initial conditions and Neumann boundary conditions in a spatially heterogeneous environment. In the whole investigation, we assume the case for random diffusion strategy. The dynamics of model behaviors show that the nature of pattern formation with varying parameters and initial conditions thoroughly. The model also studies in the absence of diffusion terms. The theoretical and numerical observations explain pattern formation using the reaction-diffusion model in both one and two dimensions. *Corresponding author: E-mail: kamrujjaman@du.ac.bd; Hossine et al.; ARRB, 36(5): 88-99, 2021; Article no.ARRB.69331\",\"PeriodicalId\":8230,\"journal\":{\"name\":\"Annual research & review in biology\",\"volume\":\"7 1\",\"pages\":\"88-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual research & review in biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ARRB/2021/V36I530380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual research & review in biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ARRB/2021/V36I530380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Brusselator模型研究了一种两种非均匀反应扩散模型。我们仔细研究了在空间异构环境中具有初始条件和诺伊曼边界条件的模式形成。在整个研究中,我们假设采用随机扩散策略。模型行为的动力学特性充分揭示了变参数、变初始条件下模式形成的本质。该模型还研究了没有扩散项的情况。理论和数值观测在一维和二维上解释了反应扩散模型的模式形成。*通讯作者:E-mail: kamrujjaman@du.ac.bd;Hossine等人;植物学报,36(5):88-99,2021;文章no.ARRB.69331
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal Brusselator Model and Biological Pattern Formation
This paper explores a two-species non-homogeneous reaction-diffusion model for the study of pattern formation with the Brusselator model. We scrutinize the pattern formation with initial conditions and Neumann boundary conditions in a spatially heterogeneous environment. In the whole investigation, we assume the case for random diffusion strategy. The dynamics of model behaviors show that the nature of pattern formation with varying parameters and initial conditions thoroughly. The model also studies in the absence of diffusion terms. The theoretical and numerical observations explain pattern formation using the reaction-diffusion model in both one and two dimensions. *Corresponding author: E-mail: kamrujjaman@du.ac.bd; Hossine et al.; ARRB, 36(5): 88-99, 2021; Article no.ARRB.69331
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信