通过穿孔环面映射类群的量子d模的傅里叶变换

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Adrien Brochier, D. Jordan
{"title":"通过穿孔环面映射类群的量子d模的傅里叶变换","authors":"Adrien Brochier, D. Jordan","doi":"10.4171/QT/92","DOIUrl":null,"url":null,"abstract":"We construct a certain cross product of two copies of the braided dual $\\tilde H$ of a quasitriangular Hopf algebra $H$, which we call the elliptic double $E_H$, and which we use to construct representations of the punctured elliptic braid group extending the well-known representations of the planar braid group attached to $H$. We show that the elliptic double is the universal source of such representations. We recover the representations of the punctured torus braid group obtained in arXiv:0805.2766, and hence construct a homomorphism to the Heisenberg double $D_H$, which is an isomorphism if $H$ is factorizable. \nThe universal property of $E_H$ endows it with an action by algebra automorphisms of the mapping class group $\\widetilde{SL_2(\\mathbb{Z})}$ of the punctured torus. One such automorphism we call the quantum Fourier transform; we show that when $H=U_q(\\mathfrak{g})$, the quantum Fourier transform degenerates to the classical Fourier transform on $D(\\mathfrak{g})$ as $q\\to 1$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fourier transform for quantum D-modules via the punctured torus mapping class group\",\"authors\":\"Adrien Brochier, D. Jordan\",\"doi\":\"10.4171/QT/92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a certain cross product of two copies of the braided dual $\\\\tilde H$ of a quasitriangular Hopf algebra $H$, which we call the elliptic double $E_H$, and which we use to construct representations of the punctured elliptic braid group extending the well-known representations of the planar braid group attached to $H$. We show that the elliptic double is the universal source of such representations. We recover the representations of the punctured torus braid group obtained in arXiv:0805.2766, and hence construct a homomorphism to the Heisenberg double $D_H$, which is an isomorphism if $H$ is factorizable. \\nThe universal property of $E_H$ endows it with an action by algebra automorphisms of the mapping class group $\\\\widetilde{SL_2(\\\\mathbb{Z})}$ of the punctured torus. One such automorphism we call the quantum Fourier transform; we show that when $H=U_q(\\\\mathfrak{g})$, the quantum Fourier transform degenerates to the classical Fourier transform on $D(\\\\mathfrak{g})$ as $q\\\\to 1$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/92\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/92","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

摘要

构造拟三角Hopf代数$H$的编织对偶$ $\波浪$ $的两个拷贝的一定叉积,我们称之为椭圆双元$E_H$,并利用它来构造穿孔椭圆编织群的表示,将已知的平面编织群的表示推广到$H$上。我们证明了椭圆双元是这种表示的普遍来源。我们恢复了在arXiv:0805.2766中得到的被刺破的环面编织群的表示,并由此构造了Heisenberg双元$D_H$的同态,当$H$可因式时,它是同态的。$E_H$的全称性质赋予了它对穿孔环面的映射类群$\ widdetilde {SL_2(\mathbb{Z})}$的代数自同构作用。其中一个自同构我们称之为量子傅里叶变换;我们证明当$H=U_q(\mathfrak{g})$时,量子傅里叶变换退化为$D(\mathfrak{g})$上的经典傅里叶变换为$q\to 1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier transform for quantum D-modules via the punctured torus mapping class group
We construct a certain cross product of two copies of the braided dual $\tilde H$ of a quasitriangular Hopf algebra $H$, which we call the elliptic double $E_H$, and which we use to construct representations of the punctured elliptic braid group extending the well-known representations of the planar braid group attached to $H$. We show that the elliptic double is the universal source of such representations. We recover the representations of the punctured torus braid group obtained in arXiv:0805.2766, and hence construct a homomorphism to the Heisenberg double $D_H$, which is an isomorphism if $H$ is factorizable. The universal property of $E_H$ endows it with an action by algebra automorphisms of the mapping class group $\widetilde{SL_2(\mathbb{Z})}$ of the punctured torus. One such automorphism we call the quantum Fourier transform; we show that when $H=U_q(\mathfrak{g})$, the quantum Fourier transform degenerates to the classical Fourier transform on $D(\mathfrak{g})$ as $q\to 1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信