基于顺应性的六足动态转向

David Zarrouk, R. Fearing
{"title":"基于顺应性的六足动态转向","authors":"David Zarrouk, R. Fearing","doi":"10.1109/IROS.2012.6385663","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel dynamic gait of locomotion for hexapedal robots which enables them to crawl forward, backward, and rotate using a single actuator. The gait exploits the compliance difference between the two sides of the tripods, to generate clockwise or counter clockwise rotation by controlling the acceleration of the robot. The direction of turning depends on the configuration of the legs -tripod left of right- and the direction of the acceleration. Alternating acceleration in successive steps allows for continuous rotation in the desired direction. An analysis of the locomotion is presented as a function of the mechanical properties of the robot and the contact with the surface. A numerical simulation was performed for various conditions of locomotion. The results of the simulation and analysis were compared and found to be in excellent match.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"14 1","pages":"3093-3098"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Compliance-based dynamic steering for hexapods\",\"authors\":\"David Zarrouk, R. Fearing\",\"doi\":\"10.1109/IROS.2012.6385663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel dynamic gait of locomotion for hexapedal robots which enables them to crawl forward, backward, and rotate using a single actuator. The gait exploits the compliance difference between the two sides of the tripods, to generate clockwise or counter clockwise rotation by controlling the acceleration of the robot. The direction of turning depends on the configuration of the legs -tripod left of right- and the direction of the acceleration. Alternating acceleration in successive steps allows for continuous rotation in the desired direction. An analysis of the locomotion is presented as a function of the mechanical properties of the robot and the contact with the surface. A numerical simulation was performed for various conditions of locomotion. The results of the simulation and analysis were compared and found to be in excellent match.\",\"PeriodicalId\":6358,\"journal\":{\"name\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"14 1\",\"pages\":\"3093-3098\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2012.6385663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种新型的六足机器人动态运动步态,使六足机器人能够在单一驱动器的作用下向前、向后和旋转爬行。步态利用三脚架两侧的顺应性差异,通过控制机器人的加速度来产生顺时针或逆时针的旋转。转弯的方向取决于腿的结构——三脚架的左或右——以及加速度的方向。交替加速在连续的步骤允许在所需的方向连续旋转。分析了机器人的运动作为机械性能和与表面接触的函数。对不同的运动条件进行了数值模拟。将仿真结果与分析结果进行了比较,发现两者非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compliance-based dynamic steering for hexapods
This paper proposes a novel dynamic gait of locomotion for hexapedal robots which enables them to crawl forward, backward, and rotate using a single actuator. The gait exploits the compliance difference between the two sides of the tripods, to generate clockwise or counter clockwise rotation by controlling the acceleration of the robot. The direction of turning depends on the configuration of the legs -tripod left of right- and the direction of the acceleration. Alternating acceleration in successive steps allows for continuous rotation in the desired direction. An analysis of the locomotion is presented as a function of the mechanical properties of the robot and the contact with the surface. A numerical simulation was performed for various conditions of locomotion. The results of the simulation and analysis were compared and found to be in excellent match.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信