{"title":"苹果根部Mdwrky33基因对黄霉侵染、非生物胁迫和化学处理的转录谱","authors":"Yanmin Zhu, M. Saltzgiver","doi":"10.33687/phytopath.008.03.2996","DOIUrl":null,"url":null,"abstract":"Plant resistance responses to pathogen infection involve massive transcriptional reprograming and widespread redirection of cellular pathways to adjust the plant from growth to defense. Transcription factors (TFs) function at the major regulating points of gene expression, and specific TFs are known to play crucial roles in plant defense activation. Molecular defense activation in apple root from infection by oomycete necrotrophic pathogen Pythium ultimum, a primary component in a pathogen complex inciting apple replant disease, has not been investigated in detail. Base on previous transcriptome analyses, members of apple WRKY gene family have been identified as the primary candidates in regulating defense response in apple root. Among them, MdWRKY33, an orthologue of AtWRKY33 in apple genome, demonstrated as a highly-expressed WRKY with genotype-specific induction patterns during P. ultimum infection. The sequence features of MdWRKY33 and its tissue-specific expression, as well as its responses to abiotic and pharmacological treatments, added to the evidence for its functional roles in defense activation in apple root. In response to P. ultimum infection, MdWRKY33 was consistently upregulated in all eight tested apple rootstock genotypes at all timepoints. Between genotypes, the stronger induction patterns at the earlier stage of infection in resistant genotypes suggest its essential roles of contributing to apple root resistance, although plant resistance to necrotrophic pathogens is polygenetic quantitative resistance in nature. Transgenic manipulation of this gene is underway to provide more definitive functional identity in contributing to apple root resistance to P. ultimum infection","PeriodicalId":36106,"journal":{"name":"International Journal of Phytopathology","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transcriptional Profiles of Mdwrky33 in Apple Root in Response to Infection by Pythium Ultimum, Abiotic Stresses and Chemical Treatments\",\"authors\":\"Yanmin Zhu, M. Saltzgiver\",\"doi\":\"10.33687/phytopath.008.03.2996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant resistance responses to pathogen infection involve massive transcriptional reprograming and widespread redirection of cellular pathways to adjust the plant from growth to defense. Transcription factors (TFs) function at the major regulating points of gene expression, and specific TFs are known to play crucial roles in plant defense activation. Molecular defense activation in apple root from infection by oomycete necrotrophic pathogen Pythium ultimum, a primary component in a pathogen complex inciting apple replant disease, has not been investigated in detail. Base on previous transcriptome analyses, members of apple WRKY gene family have been identified as the primary candidates in regulating defense response in apple root. Among them, MdWRKY33, an orthologue of AtWRKY33 in apple genome, demonstrated as a highly-expressed WRKY with genotype-specific induction patterns during P. ultimum infection. The sequence features of MdWRKY33 and its tissue-specific expression, as well as its responses to abiotic and pharmacological treatments, added to the evidence for its functional roles in defense activation in apple root. In response to P. ultimum infection, MdWRKY33 was consistently upregulated in all eight tested apple rootstock genotypes at all timepoints. Between genotypes, the stronger induction patterns at the earlier stage of infection in resistant genotypes suggest its essential roles of contributing to apple root resistance, although plant resistance to necrotrophic pathogens is polygenetic quantitative resistance in nature. Transgenic manipulation of this gene is underway to provide more definitive functional identity in contributing to apple root resistance to P. ultimum infection\",\"PeriodicalId\":36106,\"journal\":{\"name\":\"International Journal of Phytopathology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytopathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33687/phytopath.008.03.2996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33687/phytopath.008.03.2996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Transcriptional Profiles of Mdwrky33 in Apple Root in Response to Infection by Pythium Ultimum, Abiotic Stresses and Chemical Treatments
Plant resistance responses to pathogen infection involve massive transcriptional reprograming and widespread redirection of cellular pathways to adjust the plant from growth to defense. Transcription factors (TFs) function at the major regulating points of gene expression, and specific TFs are known to play crucial roles in plant defense activation. Molecular defense activation in apple root from infection by oomycete necrotrophic pathogen Pythium ultimum, a primary component in a pathogen complex inciting apple replant disease, has not been investigated in detail. Base on previous transcriptome analyses, members of apple WRKY gene family have been identified as the primary candidates in regulating defense response in apple root. Among them, MdWRKY33, an orthologue of AtWRKY33 in apple genome, demonstrated as a highly-expressed WRKY with genotype-specific induction patterns during P. ultimum infection. The sequence features of MdWRKY33 and its tissue-specific expression, as well as its responses to abiotic and pharmacological treatments, added to the evidence for its functional roles in defense activation in apple root. In response to P. ultimum infection, MdWRKY33 was consistently upregulated in all eight tested apple rootstock genotypes at all timepoints. Between genotypes, the stronger induction patterns at the earlier stage of infection in resistant genotypes suggest its essential roles of contributing to apple root resistance, although plant resistance to necrotrophic pathogens is polygenetic quantitative resistance in nature. Transgenic manipulation of this gene is underway to provide more definitive functional identity in contributing to apple root resistance to P. ultimum infection