{"title":"基于视觉的四旋翼无人机最短时间轨迹生成","authors":"Bryan Penin, R. Spica, P. Giordano, F. Chaumette","doi":"10.1109/IROS.2017.8206522","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of using a camera with limited field of view for controlling the motion of a quadrotor in aggressive flight regimes. We present a minimum time trajectory planning method that guarantees visibility of the image features while allowing the robot to undertake aggressive motions for which the usual near-hovering assumption is violated. We exploit differential flatness and B-Splines to parametrize the system trajectories in terms of a finite number of control points, which can then be optimized by Sequential Quadratic Programming (SQP). The control strategy is similar to a Receding Horizon Control (RHC) approach for modifying online the reference trajectory in order to account for noise, disturbances and any non-modeled effect. The algorithm is validated in a physically realistic simulation environment.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"69 1","pages":"6199-6206"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Vision-based minimum-time trajectory generation for a quadrotor UAV\",\"authors\":\"Bryan Penin, R. Spica, P. Giordano, F. Chaumette\",\"doi\":\"10.1109/IROS.2017.8206522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of using a camera with limited field of view for controlling the motion of a quadrotor in aggressive flight regimes. We present a minimum time trajectory planning method that guarantees visibility of the image features while allowing the robot to undertake aggressive motions for which the usual near-hovering assumption is violated. We exploit differential flatness and B-Splines to parametrize the system trajectories in terms of a finite number of control points, which can then be optimized by Sequential Quadratic Programming (SQP). The control strategy is similar to a Receding Horizon Control (RHC) approach for modifying online the reference trajectory in order to account for noise, disturbances and any non-modeled effect. The algorithm is validated in a physically realistic simulation environment.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"69 1\",\"pages\":\"6199-6206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vision-based minimum-time trajectory generation for a quadrotor UAV
In this paper, we address the problem of using a camera with limited field of view for controlling the motion of a quadrotor in aggressive flight regimes. We present a minimum time trajectory planning method that guarantees visibility of the image features while allowing the robot to undertake aggressive motions for which the usual near-hovering assumption is violated. We exploit differential flatness and B-Splines to parametrize the system trajectories in terms of a finite number of control points, which can then be optimized by Sequential Quadratic Programming (SQP). The control strategy is similar to a Receding Horizon Control (RHC) approach for modifying online the reference trajectory in order to account for noise, disturbances and any non-modeled effect. The algorithm is validated in a physically realistic simulation environment.