{"title":"教育系统的安全感知和隐私保护区块链变色龙哈希函数","authors":"P. Rani, S. Priya","doi":"10.37936/ecti-cit.2023172.252014","DOIUrl":null,"url":null,"abstract":"The most crucial properties of decentralized, immutable blockchain technologies are being transparent, tamper-proof, and have total traceability. With an increase in overseas students globally, the problem of diploma forgery, and the sale of forged credentials, the management and dissemination of student educational information continue to encounter several problems. Privacy violation issues like security, privacy, trustworthiness, consistency challenges, and traceability issues are considered when managing student academic records in educational sectors. The proposed work is a novel decentralized Chameleon Hash Function and it is applied to overcome these privacy violation issues. Security-aware and privacy-preserving blockchain Chameleon hash functions for Education System are suggested because every redaction needs to be approved by numerous blockchain nodes. A Proof of Continuous Work (PoCW) consensus algorithm entirely based on Blockchain is proposed for data storage and sharing, which minimizes processing power wastage to enhance the accessibility and transparency of the procedure for students receiving educational degree certificates. By consistently giving proof of storage, miners can gain an edge in the mining procedure. Without any outside help, Blockchain has created a reliable blockchain-based storage system that does not depend on a third party. The simulation and theoretical study's findings demonstrate that the proposed scheme has enhanced security, trustworthiness, and traceability.","PeriodicalId":38808,"journal":{"name":"Transactions on Electrical Engineering, Electronics, and Communications","volume":"21 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Security-Aware and Privacy-Preserving Blockchain Chameleon Hash Functions for Education System\",\"authors\":\"P. Rani, S. Priya\",\"doi\":\"10.37936/ecti-cit.2023172.252014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most crucial properties of decentralized, immutable blockchain technologies are being transparent, tamper-proof, and have total traceability. With an increase in overseas students globally, the problem of diploma forgery, and the sale of forged credentials, the management and dissemination of student educational information continue to encounter several problems. Privacy violation issues like security, privacy, trustworthiness, consistency challenges, and traceability issues are considered when managing student academic records in educational sectors. The proposed work is a novel decentralized Chameleon Hash Function and it is applied to overcome these privacy violation issues. Security-aware and privacy-preserving blockchain Chameleon hash functions for Education System are suggested because every redaction needs to be approved by numerous blockchain nodes. A Proof of Continuous Work (PoCW) consensus algorithm entirely based on Blockchain is proposed for data storage and sharing, which minimizes processing power wastage to enhance the accessibility and transparency of the procedure for students receiving educational degree certificates. By consistently giving proof of storage, miners can gain an edge in the mining procedure. Without any outside help, Blockchain has created a reliable blockchain-based storage system that does not depend on a third party. The simulation and theoretical study's findings demonstrate that the proposed scheme has enhanced security, trustworthiness, and traceability.\",\"PeriodicalId\":38808,\"journal\":{\"name\":\"Transactions on Electrical Engineering, Electronics, and Communications\",\"volume\":\"21 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Electrical Engineering, Electronics, and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37936/ecti-cit.2023172.252014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Electrical Engineering, Electronics, and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37936/ecti-cit.2023172.252014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Security-Aware and Privacy-Preserving Blockchain Chameleon Hash Functions for Education System
The most crucial properties of decentralized, immutable blockchain technologies are being transparent, tamper-proof, and have total traceability. With an increase in overseas students globally, the problem of diploma forgery, and the sale of forged credentials, the management and dissemination of student educational information continue to encounter several problems. Privacy violation issues like security, privacy, trustworthiness, consistency challenges, and traceability issues are considered when managing student academic records in educational sectors. The proposed work is a novel decentralized Chameleon Hash Function and it is applied to overcome these privacy violation issues. Security-aware and privacy-preserving blockchain Chameleon hash functions for Education System are suggested because every redaction needs to be approved by numerous blockchain nodes. A Proof of Continuous Work (PoCW) consensus algorithm entirely based on Blockchain is proposed for data storage and sharing, which minimizes processing power wastage to enhance the accessibility and transparency of the procedure for students receiving educational degree certificates. By consistently giving proof of storage, miners can gain an edge in the mining procedure. Without any outside help, Blockchain has created a reliable blockchain-based storage system that does not depend on a third party. The simulation and theoretical study's findings demonstrate that the proposed scheme has enhanced security, trustworthiness, and traceability.