人类传记记录(HBR)

Arash Nekoei, Fabian Sinn
{"title":"人类传记记录(HBR)","authors":"Arash Nekoei, Fabian Sinn","doi":"10.2139/ssrn.3741450","DOIUrl":null,"url":null,"abstract":"We construct a new dataset of more than seven million notable individuals across recorded human history, the Human Biographical Record (HBR). With Wikidata as the backbone, HBR adds further information from various digital sources, including Wikipedia in all 292 languages. Machine learning and text analysis combine the sources and extract information on date and place of birth and death, gender, occupation, education, and family background. This paper discusses HBR's construction and its completeness, coverage, accuracy, and also its strength and weakness relative to prior datasets. HBR is the first part of a larger project, the human record project that we briefly introduce.","PeriodicalId":22967,"journal":{"name":"The Repository: Historiographical eJournal","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Human Biographical Record (HBR)\",\"authors\":\"Arash Nekoei, Fabian Sinn\",\"doi\":\"10.2139/ssrn.3741450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a new dataset of more than seven million notable individuals across recorded human history, the Human Biographical Record (HBR). With Wikidata as the backbone, HBR adds further information from various digital sources, including Wikipedia in all 292 languages. Machine learning and text analysis combine the sources and extract information on date and place of birth and death, gender, occupation, education, and family background. This paper discusses HBR's construction and its completeness, coverage, accuracy, and also its strength and weakness relative to prior datasets. HBR is the first part of a larger project, the human record project that we briefly introduce.\",\"PeriodicalId\":22967,\"journal\":{\"name\":\"The Repository: Historiographical eJournal\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Repository: Historiographical eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3741450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Repository: Historiographical eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3741450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们构建了一个新的数据集,包含了人类历史上超过700万的著名人物,即人类传记记录(HBR)。以维基数据为基础,《哈佛商业评论》从各种数字资源中添加了更多的信息,包括所有292种语言的维基百科。机器学习和文本分析结合来源并提取有关出生和死亡日期和地点、性别、职业、教育程度和家庭背景的信息。本文讨论了HBR的结构及其完整性、覆盖面、准确性,以及相对于先前数据集的优缺点。HBR是一个更大项目的第一部分,我们简要介绍一下人类记录项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Biographical Record (HBR)
We construct a new dataset of more than seven million notable individuals across recorded human history, the Human Biographical Record (HBR). With Wikidata as the backbone, HBR adds further information from various digital sources, including Wikipedia in all 292 languages. Machine learning and text analysis combine the sources and extract information on date and place of birth and death, gender, occupation, education, and family background. This paper discusses HBR's construction and its completeness, coverage, accuracy, and also its strength and weakness relative to prior datasets. HBR is the first part of a larger project, the human record project that we briefly introduce.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信