{"title":"缺陷分类的轨道完成","authors":"Nils Carqueville, I. Runkel","doi":"10.4171/QT/76","DOIUrl":null,"url":null,"abstract":"Orbifolds of two-dimensional quantum field theories have a natural formulation in terms of defects or domain walls. This perspective allows for a rich generalisation of the orbifolding procedure, which we study in detail for the case of topological field theories. Namely, a TFT with defects gives rise to a pivotal bicategory of \"worldsheet phases\" and defects between them. We develop a general framework which takes such a bicategory B as input and returns its \"orbifold completion\" B_orb. The completion satisfies the natural properties B \\subset B_orb and (B_orb)_orb = B_orb, and it gives rise to various new equivalences and nondegeneracy results. When applied to TFTs, the objects in B_orb correspond to generalised orbifolds of the theories in B. In the example of Landau-Ginzburg models we recover and unify conventional equivariant matrix factorisations, prove when and how (generalised) orbifolds again produce open/closed TFTs, and give nontrivial examples of new orbifold equivalences.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"141 1","pages":"203-279"},"PeriodicalIF":1.0000,"publicationDate":"2012-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"Orbifold completion of defect bicategories\",\"authors\":\"Nils Carqueville, I. Runkel\",\"doi\":\"10.4171/QT/76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orbifolds of two-dimensional quantum field theories have a natural formulation in terms of defects or domain walls. This perspective allows for a rich generalisation of the orbifolding procedure, which we study in detail for the case of topological field theories. Namely, a TFT with defects gives rise to a pivotal bicategory of \\\"worldsheet phases\\\" and defects between them. We develop a general framework which takes such a bicategory B as input and returns its \\\"orbifold completion\\\" B_orb. The completion satisfies the natural properties B \\\\subset B_orb and (B_orb)_orb = B_orb, and it gives rise to various new equivalences and nondegeneracy results. When applied to TFTs, the objects in B_orb correspond to generalised orbifolds of the theories in B. In the example of Landau-Ginzburg models we recover and unify conventional equivariant matrix factorisations, prove when and how (generalised) orbifolds again produce open/closed TFTs, and give nontrivial examples of new orbifold equivalences.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"141 1\",\"pages\":\"203-279\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/76\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/76","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Orbifolds of two-dimensional quantum field theories have a natural formulation in terms of defects or domain walls. This perspective allows for a rich generalisation of the orbifolding procedure, which we study in detail for the case of topological field theories. Namely, a TFT with defects gives rise to a pivotal bicategory of "worldsheet phases" and defects between them. We develop a general framework which takes such a bicategory B as input and returns its "orbifold completion" B_orb. The completion satisfies the natural properties B \subset B_orb and (B_orb)_orb = B_orb, and it gives rise to various new equivalences and nondegeneracy results. When applied to TFTs, the objects in B_orb correspond to generalised orbifolds of the theories in B. In the example of Landau-Ginzburg models we recover and unify conventional equivariant matrix factorisations, prove when and how (generalised) orbifolds again produce open/closed TFTs, and give nontrivial examples of new orbifold equivalences.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.