Xinyi Xia, M. Xian, Chaker Fares, F. Ren, M. Tadjer, S. Pearton
{"title":"ITO肖特基触点在β-Ga2O3上的温度依赖性性能","authors":"Xinyi Xia, M. Xian, Chaker Fares, F. Ren, M. Tadjer, S. Pearton","doi":"10.1116/6.0001211","DOIUrl":null,"url":null,"abstract":"Sputtered indium tin oxide (ITO) was used as a rectifying contact on lightly n-type (n ∼ 1016 cm−3) β-Ga2O3 and found to exhibit excellent Schottky characteristics up to 500 K, with no thermally driven degradation to this temperature. The barrier height extracted from current–voltage characteristics was 1.15 ± 0.04 eV at 300 K and 0.78 ± 0.03 eV at 500 K, with thermionic behavior of charge carriers over the image force lowered Schottky barriers dominating the carrier transport at low temperatures. The breakdown voltages were 246, 185, and 144 V at 300, 400 and 500 K, respectively. At 600 K, the diodes suffered irreversible thermal damage. The diode on/off ratio was >105 for reverse biases up to 100 V. At higher reverse voltage, the current shows an I ∝ Vn relationship with voltage, indicating a trap-assisted space-charge-limited conduction (SCLC) mechanism. We observed this SCLC relation when the reverse voltage was larger than 100 V for 300 and 400 K and at <100 V at 500 K. The ITO can also be used to make Ohmic contacts on heavily doped Ga2O3 suggesting the possibility of completely optically transparent power devices.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"157 1","pages":"053405"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Temperature dependent performance of ITO Schottky contacts on β-Ga2O3\",\"authors\":\"Xinyi Xia, M. Xian, Chaker Fares, F. Ren, M. Tadjer, S. Pearton\",\"doi\":\"10.1116/6.0001211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sputtered indium tin oxide (ITO) was used as a rectifying contact on lightly n-type (n ∼ 1016 cm−3) β-Ga2O3 and found to exhibit excellent Schottky characteristics up to 500 K, with no thermally driven degradation to this temperature. The barrier height extracted from current–voltage characteristics was 1.15 ± 0.04 eV at 300 K and 0.78 ± 0.03 eV at 500 K, with thermionic behavior of charge carriers over the image force lowered Schottky barriers dominating the carrier transport at low temperatures. The breakdown voltages were 246, 185, and 144 V at 300, 400 and 500 K, respectively. At 600 K, the diodes suffered irreversible thermal damage. The diode on/off ratio was >105 for reverse biases up to 100 V. At higher reverse voltage, the current shows an I ∝ Vn relationship with voltage, indicating a trap-assisted space-charge-limited conduction (SCLC) mechanism. We observed this SCLC relation when the reverse voltage was larger than 100 V for 300 and 400 K and at <100 V at 500 K. The ITO can also be used to make Ohmic contacts on heavily doped Ga2O3 suggesting the possibility of completely optically transparent power devices.\",\"PeriodicalId\":17571,\"journal\":{\"name\":\"Journal of Vacuum Science and Technology\",\"volume\":\"157 1\",\"pages\":\"053405\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0001211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature dependent performance of ITO Schottky contacts on β-Ga2O3
Sputtered indium tin oxide (ITO) was used as a rectifying contact on lightly n-type (n ∼ 1016 cm−3) β-Ga2O3 and found to exhibit excellent Schottky characteristics up to 500 K, with no thermally driven degradation to this temperature. The barrier height extracted from current–voltage characteristics was 1.15 ± 0.04 eV at 300 K and 0.78 ± 0.03 eV at 500 K, with thermionic behavior of charge carriers over the image force lowered Schottky barriers dominating the carrier transport at low temperatures. The breakdown voltages were 246, 185, and 144 V at 300, 400 and 500 K, respectively. At 600 K, the diodes suffered irreversible thermal damage. The diode on/off ratio was >105 for reverse biases up to 100 V. At higher reverse voltage, the current shows an I ∝ Vn relationship with voltage, indicating a trap-assisted space-charge-limited conduction (SCLC) mechanism. We observed this SCLC relation when the reverse voltage was larger than 100 V for 300 and 400 K and at <100 V at 500 K. The ITO can also be used to make Ohmic contacts on heavily doped Ga2O3 suggesting the possibility of completely optically transparent power devices.