{"title":"心脏瓣膜-左心室动力学的完全耦合流固耦合(FSI)模拟","authors":"Wei Sun","doi":"10.32604/mcb.2019.08533","DOIUrl":null,"url":null,"abstract":"Fluid–structure interaction (FSI) is a common phenomenon in biological systems. FSI problems of practical interest, such as fish/mammalian swimming, insect/bird flight, and human cardiac blood flow and respiration often involve multiple 3D immersed bodies with complex geometries undergoing very large structural displacements, and inducing very complex flow phenomena. Simulation of heart valve FSI is a technically challenging problem due to the large deformation of the valve leaflets through the cardiac fluid domain in the atrium and ventricular chambers. Recently, we developed a FSI computational framework [1] for modeling patient-specific left heart (LH) dynamics using smoothed particle hydrodynamics (SPH) for the blood flow, and non-linear anisotropic finite element analysis for heart valve tissues. SPH is a meshless, statistical method that relies on sampling neighboring particles to calculate fluid field variables. SPH’s mesh-free and Lagrangian nature makes it particular suitable for numerical problems where there are 1) moving boundaries and 2) large deformations, which are the conditions seen in heart valve FSI applications. In this presentation, I will explain under which scenarios that heart valve FSI simulations are needed, and give a few examples of our FSI applications. Briefly, we utilized the SPH-FE based, fully-coupled FSI modeling techniques to investigate the pathological LH dynamics under primary and secondary mitral regurgitation (MR) conditions [2], and examine the underlying biomechanics of various minimally-invasive mitral valve (MV) repair techniques. The FSI model was also used to investigate the impact of transcatheter aortic valve replacement (TAVR) on LH dynamics under bicuspid aortic valve (BAV) stenosis and concomitant significant MR [3].","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully-Coupled Fluid-Structure Interaction (FSI) Simulations of Heart Valve-Left Ventricle Dynamics\",\"authors\":\"Wei Sun\",\"doi\":\"10.32604/mcb.2019.08533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluid–structure interaction (FSI) is a common phenomenon in biological systems. FSI problems of practical interest, such as fish/mammalian swimming, insect/bird flight, and human cardiac blood flow and respiration often involve multiple 3D immersed bodies with complex geometries undergoing very large structural displacements, and inducing very complex flow phenomena. Simulation of heart valve FSI is a technically challenging problem due to the large deformation of the valve leaflets through the cardiac fluid domain in the atrium and ventricular chambers. Recently, we developed a FSI computational framework [1] for modeling patient-specific left heart (LH) dynamics using smoothed particle hydrodynamics (SPH) for the blood flow, and non-linear anisotropic finite element analysis for heart valve tissues. SPH is a meshless, statistical method that relies on sampling neighboring particles to calculate fluid field variables. SPH’s mesh-free and Lagrangian nature makes it particular suitable for numerical problems where there are 1) moving boundaries and 2) large deformations, which are the conditions seen in heart valve FSI applications. In this presentation, I will explain under which scenarios that heart valve FSI simulations are needed, and give a few examples of our FSI applications. Briefly, we utilized the SPH-FE based, fully-coupled FSI modeling techniques to investigate the pathological LH dynamics under primary and secondary mitral regurgitation (MR) conditions [2], and examine the underlying biomechanics of various minimally-invasive mitral valve (MV) repair techniques. The FSI model was also used to investigate the impact of transcatheter aortic valve replacement (TAVR) on LH dynamics under bicuspid aortic valve (BAV) stenosis and concomitant significant MR [3].\",\"PeriodicalId\":48719,\"journal\":{\"name\":\"Molecular & Cellular Biomechanics\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Biomechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/mcb.2019.08533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.08533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Fully-Coupled Fluid-Structure Interaction (FSI) Simulations of Heart Valve-Left Ventricle Dynamics
Fluid–structure interaction (FSI) is a common phenomenon in biological systems. FSI problems of practical interest, such as fish/mammalian swimming, insect/bird flight, and human cardiac blood flow and respiration often involve multiple 3D immersed bodies with complex geometries undergoing very large structural displacements, and inducing very complex flow phenomena. Simulation of heart valve FSI is a technically challenging problem due to the large deformation of the valve leaflets through the cardiac fluid domain in the atrium and ventricular chambers. Recently, we developed a FSI computational framework [1] for modeling patient-specific left heart (LH) dynamics using smoothed particle hydrodynamics (SPH) for the blood flow, and non-linear anisotropic finite element analysis for heart valve tissues. SPH is a meshless, statistical method that relies on sampling neighboring particles to calculate fluid field variables. SPH’s mesh-free and Lagrangian nature makes it particular suitable for numerical problems where there are 1) moving boundaries and 2) large deformations, which are the conditions seen in heart valve FSI applications. In this presentation, I will explain under which scenarios that heart valve FSI simulations are needed, and give a few examples of our FSI applications. Briefly, we utilized the SPH-FE based, fully-coupled FSI modeling techniques to investigate the pathological LH dynamics under primary and secondary mitral regurgitation (MR) conditions [2], and examine the underlying biomechanics of various minimally-invasive mitral valve (MV) repair techniques. The FSI model was also used to investigate the impact of transcatheter aortic valve replacement (TAVR) on LH dynamics under bicuspid aortic valve (BAV) stenosis and concomitant significant MR [3].
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.