E. Chikhirzhina, T. Starkova, Elena Kostyleva, A. Polyanichko
{"title":"海星精子中DNA与连接蛋白H1相互作用的光谱研究揭示了超浓缩精子染色质形成的机制","authors":"E. Chikhirzhina, T. Starkova, Elena Kostyleva, A. Polyanichko","doi":"10.1155/2012/250489","DOIUrl":null,"url":null,"abstract":"The interaction of the linker histone H1Z from the sperm chromatin of starfish Asterias amurensis with DNA was studied by spectroscopic and thermodynamic approaches. It has been shown that at the physiological conditions the interaction of the H1Z with DNA results in more compact structures compared to complexes of DNA with somatic histone H1. The typical profile of the DNA melting curves reveals two peaks attributed to the bound and unbound DNA. It has been shown that H1Z from starfish sperm stabilizes DNA to a greater extent compared to the somatic H1. It is possible that the presence of the additional α—helical segments within the C-terminal part of the H1Z typical for the linker histones from echinoderm sperm facilitates the protein-protein interactions which in turn stimulate cooperative binding of the histones to DNA, resulting in the formation of the supercompact sperm chromatin.","PeriodicalId":51163,"journal":{"name":"Spectroscopy-An International Journal","volume":"44 1","pages":"433-440"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spectroscopic Study of the Interaction of DNA with the Linker Histone H1 from Starfish Sperm Reveals Mechanisms of the Formation of Supercondensed Sperm Chromatin\",\"authors\":\"E. Chikhirzhina, T. Starkova, Elena Kostyleva, A. Polyanichko\",\"doi\":\"10.1155/2012/250489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction of the linker histone H1Z from the sperm chromatin of starfish Asterias amurensis with DNA was studied by spectroscopic and thermodynamic approaches. It has been shown that at the physiological conditions the interaction of the H1Z with DNA results in more compact structures compared to complexes of DNA with somatic histone H1. The typical profile of the DNA melting curves reveals two peaks attributed to the bound and unbound DNA. It has been shown that H1Z from starfish sperm stabilizes DNA to a greater extent compared to the somatic H1. It is possible that the presence of the additional α—helical segments within the C-terminal part of the H1Z typical for the linker histones from echinoderm sperm facilitates the protein-protein interactions which in turn stimulate cooperative binding of the histones to DNA, resulting in the formation of the supercompact sperm chromatin.\",\"PeriodicalId\":51163,\"journal\":{\"name\":\"Spectroscopy-An International Journal\",\"volume\":\"44 1\",\"pages\":\"433-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/250489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/250489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectroscopic Study of the Interaction of DNA with the Linker Histone H1 from Starfish Sperm Reveals Mechanisms of the Formation of Supercondensed Sperm Chromatin
The interaction of the linker histone H1Z from the sperm chromatin of starfish Asterias amurensis with DNA was studied by spectroscopic and thermodynamic approaches. It has been shown that at the physiological conditions the interaction of the H1Z with DNA results in more compact structures compared to complexes of DNA with somatic histone H1. The typical profile of the DNA melting curves reveals two peaks attributed to the bound and unbound DNA. It has been shown that H1Z from starfish sperm stabilizes DNA to a greater extent compared to the somatic H1. It is possible that the presence of the additional α—helical segments within the C-terminal part of the H1Z typical for the linker histones from echinoderm sperm facilitates the protein-protein interactions which in turn stimulate cooperative binding of the histones to DNA, resulting in the formation of the supercompact sperm chromatin.