{"title":"通过超图拉格朗日密度的非理性Turán密度","authors":"Biao Wu","doi":"10.37236/10645","DOIUrl":null,"url":null,"abstract":"Baber and Talbot asked whether there is an irrational Turán density of a single hypergraph. In this paper, we show that the Lagrangian density of a 4-uniform matching of size 3 is an irrational number. Sidorenko showed that the Lagrangian density of an r-uniform hypergraph F is the same as the Turán density of the extension of F. Therefore, our result gives a positive answer to the question of Baber and Talbot. We also determine the Lagrangian densities of a class of r-uniform hypergraphs on n vertices with θ(n2) edges. As far as we know, for every hypergraph F with known hypergraph Lagrangian density, the number of edges in F is less than the number of its vertices.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Irrational Turán Density via Hypergraph Lagrangian Densities\",\"authors\":\"Biao Wu\",\"doi\":\"10.37236/10645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Baber and Talbot asked whether there is an irrational Turán density of a single hypergraph. In this paper, we show that the Lagrangian density of a 4-uniform matching of size 3 is an irrational number. Sidorenko showed that the Lagrangian density of an r-uniform hypergraph F is the same as the Turán density of the extension of F. Therefore, our result gives a positive answer to the question of Baber and Talbot. We also determine the Lagrangian densities of a class of r-uniform hypergraphs on n vertices with θ(n2) edges. As far as we know, for every hypergraph F with known hypergraph Lagrangian density, the number of edges in F is less than the number of its vertices.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/10645\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10645","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
An Irrational Turán Density via Hypergraph Lagrangian Densities
Baber and Talbot asked whether there is an irrational Turán density of a single hypergraph. In this paper, we show that the Lagrangian density of a 4-uniform matching of size 3 is an irrational number. Sidorenko showed that the Lagrangian density of an r-uniform hypergraph F is the same as the Turán density of the extension of F. Therefore, our result gives a positive answer to the question of Baber and Talbot. We also determine the Lagrangian densities of a class of r-uniform hypergraphs on n vertices with θ(n2) edges. As far as we know, for every hypergraph F with known hypergraph Lagrangian density, the number of edges in F is less than the number of its vertices.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.