模板印刷建模中增强决策树的过拟合分析

Q3 Computer Science
P. Martinek, O. Krammer
{"title":"模板印刷建模中增强决策树的过拟合分析","authors":"P. Martinek, O. Krammer","doi":"10.3311/ppee.19274","DOIUrl":null,"url":null,"abstract":"Stencil printing is one of the key steps in reflow soldering technology, and by the spread of ultra-fine-pitch components, analysis of this process is essential. The process of stencil printing has been investigated by a machine learning technique utilizing the ensemble method of boosted decision trees. The phenomenon of overfitting, which can alter the prediction error of boosted decision trees has also been analyzed in detail. The training data set was acquired experimentally by performing stencil printing using different printing speeds (from 20 to 120 mm/s) and various types of solder pastes with different particle sizes (particle size range 25–45 µm, 20–38 µm, 15–25 µm) and different stencil aperture sizes, characterized by their area ratio (from 0.35 to 1.7). The overfitting phenomenon was addressed by training by using incomplete data sets, which means that a subset of data corresponding to a particular input parameter value was excluded from the training. Four cases were investigated with incomplete data sets, by excluding the corresponding data subsets for: area ratios of 0.75 and 1.3, and printing speeds of 70 mm/s and 85 mm/s. It was found that the prediction error at input parameter values that have been excluded from the training can be lowered by eliminating the overfitting; though, the decrease in the prediction error depends on the rate of change in the output parameter in the vicinity of the respective input parameter value.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Overfitting of Boosted Decision Trees for the Modelling of Stencil Printing\",\"authors\":\"P. Martinek, O. Krammer\",\"doi\":\"10.3311/ppee.19274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stencil printing is one of the key steps in reflow soldering technology, and by the spread of ultra-fine-pitch components, analysis of this process is essential. The process of stencil printing has been investigated by a machine learning technique utilizing the ensemble method of boosted decision trees. The phenomenon of overfitting, which can alter the prediction error of boosted decision trees has also been analyzed in detail. The training data set was acquired experimentally by performing stencil printing using different printing speeds (from 20 to 120 mm/s) and various types of solder pastes with different particle sizes (particle size range 25–45 µm, 20–38 µm, 15–25 µm) and different stencil aperture sizes, characterized by their area ratio (from 0.35 to 1.7). The overfitting phenomenon was addressed by training by using incomplete data sets, which means that a subset of data corresponding to a particular input parameter value was excluded from the training. Four cases were investigated with incomplete data sets, by excluding the corresponding data subsets for: area ratios of 0.75 and 1.3, and printing speeds of 70 mm/s and 85 mm/s. It was found that the prediction error at input parameter values that have been excluded from the training can be lowered by eliminating the overfitting; though, the decrease in the prediction error depends on the rate of change in the output parameter in the vicinity of the respective input parameter value.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.19274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.19274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

模板印刷是回流焊技术的关键步骤之一,随着超细间距元件的普及,对这一过程的分析是必不可少的。利用增强决策树的集成方法,利用机器学习技术研究了模板印刷过程。本文还详细分析了过度拟合现象,这种现象会改变增强决策树的预测误差。实验采用不同的印刷速度(20 ~ 120mm /s)和不同粒径(25 ~ 45µm, 20 ~ 38µm, 15 ~ 25µm)的焊锡膏和不同孔径(面积比为0.35 ~ 1.7)的焊锡膏进行模板印刷,获得训练数据集。通过使用不完整的数据集进行训练来解决过拟合现象,这意味着与特定输入参数值对应的数据子集被排除在训练之外。通过排除相应的数据子集(面积比为0.75和1.3,打印速度为70 mm/s和85 mm/s),对四例不完整数据集进行了调查。研究发现,通过消除过拟合可以降低被排除在训练之外的输入参数值的预测误差;但是,预测误差的减少取决于输出参数在各自输入参数值附近的变化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Overfitting of Boosted Decision Trees for the Modelling of Stencil Printing
Stencil printing is one of the key steps in reflow soldering technology, and by the spread of ultra-fine-pitch components, analysis of this process is essential. The process of stencil printing has been investigated by a machine learning technique utilizing the ensemble method of boosted decision trees. The phenomenon of overfitting, which can alter the prediction error of boosted decision trees has also been analyzed in detail. The training data set was acquired experimentally by performing stencil printing using different printing speeds (from 20 to 120 mm/s) and various types of solder pastes with different particle sizes (particle size range 25–45 µm, 20–38 µm, 15–25 µm) and different stencil aperture sizes, characterized by their area ratio (from 0.35 to 1.7). The overfitting phenomenon was addressed by training by using incomplete data sets, which means that a subset of data corresponding to a particular input parameter value was excluded from the training. Four cases were investigated with incomplete data sets, by excluding the corresponding data subsets for: area ratios of 0.75 and 1.3, and printing speeds of 70 mm/s and 85 mm/s. It was found that the prediction error at input parameter values that have been excluded from the training can be lowered by eliminating the overfitting; though, the decrease in the prediction error depends on the rate of change in the output parameter in the vicinity of the respective input parameter value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica polytechnica Electrical engineering and computer science
Periodica polytechnica Electrical engineering and computer science Engineering-Electrical and Electronic Engineering
CiteScore
2.60
自引率
0.00%
发文量
36
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信